

STUDENT SUMMER INTERNSHIP TECHNICAL REPORT

Using a 64-bit Disassembler to Employ
Heuristic Analysis of Executable Programs

using Hyperion

DOE-FIU SCIENCE & TECHNOLOGY
WORKFORCE DEVELOPMENT PROGRAM

Date submitted:

September 30, 2015

Principal Investigators:

Andrew De La Rosa, DOE Fellow
Florida International University

Joseph Trien, Mentor

Oak Ridge National Laboratory

Florida International University Program Director:

Leonel Lagos Ph.D., PMP®

Submitted to:

U.S. Department of Energy
Office of Environmental Management

Under Cooperative Agreement # DE-EM0000598

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor any agency thereof, nor any
of their employees, nor any of its contractors, subcontractors, nor their employees makes
any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe upon privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or any other
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States government or any agency thereof.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 iii

 ABSTRACT

Hyperion is software that is used to reverse engineer executable binary code to return the
program’s functional behavior. Today, the use of behavioral analysis has shown to be a proven
and effective way to scan for malware, alongside heuristic analysis, which has been the ‘de-facto’
model of analyzing computers for malware for the past 20 years. But as technology has improved
and new systems are using 64 bit programs, so are many malware authors; this requires Hyperion
to be updated to meet these new threats and computer attacks.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 iv

TABLE OF CONTENTS

ABSTRACT ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ...v

1. INTRODUCTION ...1

2. EXECUTIVE SUMMARY ...2

3. RESEARCH DESCRIPTION ..3

4. RESULTS AND ANALYSIS ..8

5. CONCLUSION ..10

6. REFERENCES ..11

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 v

LIST OF FIGURES

Figure 1. Behavior computation system architecture. .. 3
Figure 2. Example for computing flow control. ... 4
Figure 3. Example of a structured program using PDL. ... 4
Figure 4. Example of a disassembler extracting machine code into assembly code. 5
Figure 5. Breakdown of 32-bit portable executable file. .. 7

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 1

 1. INTRODUCTION

The Hyperion Project is an ongoing 10 year project, with the ability to analyze software using
mathematical computations. Analyzing the functional behavior of a program is a potentially
more accurate way to detect potential malicious activity, since a program may not exhibit
malicious behavior during testing. Currently, the security policies we have of standardization,
training security personnel, and risk management are good implementations but are not enough
to tackle the threat. Hyperion analyzes the structure of a program for all its intended or
unintended purposes; by operating on the program semantics and the binaries on the low-level
of the program’s calling structure, we obtain a more accurate analysis of the overall code of
the program. Semantic analysis is guided using structure and behavior computation that in turn
use mathematical precision to ensure that all outputs are traceable back to the original input
and path taken. The success of this project can be exported for customizable use as well as
malware detection and rigorous software development.

Currently, Hyperion can process 32-bit binaries, but there is increasing need for a 64-bit model
of Hyperion. In order to proceed with this new model and development, a restructured version
of the application is required. Modern compilation and design is one of the fundamental key
factors that takes place in this process and requires a new approach, different from the market
and current views on tackling malware analysis. Malware analysis today depends on heuristic
analysis, which determines if a file is malware depending on if the hash taken from a file
matches a database catalog full of malware signatures. While this technique has been in place
for several years by many anti-virus companies, this model is slowly becoming obsolete; this
is due to many recent efforts by malware authors to hide their files using legitimate programs
to execute them (which in turn nullifies this procedure).

Behavioral analysis is a far more precise method of analyzing malware and determining its
effects; malware programs today have timing and structured methods that prevent detection
and can actually alter data in order to make other files and programs seem malicious.
Behavioral methods require more resources because they take into account all of the
components that make up the program (including but not limited to timing delays, obfuscation,
and third-party packaging).

In order to implement a 64-bit model of Hyperion, we have to take the following into account:
1) The current model of Hyperion has a limit on the size of the file that it could take; 2)
Hyperion is built on multiple coding languages (C, C++, Python, etc.), so there are additional
files that perform conversions in order for the scripts to understand each other; and 3) Hyperion
is set to inspect only .exe executables, and does not have the framework to examine other file
types.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 2

2. EXECUTIVE SUMMARY

This research work has been supported by the DOE-FIU Science & Technology Workforce
Initiative, an innovative program developed by the US Department of Energy’s Environmental
Management (DOE-EM) and Florida International University’s Applied Research Center
(FIU-ARC). During the summer of 2015, a DOE Fellow intern (Andrew De La Rosa) spent 10
weeks doing a summer internship at Oak Ridge National Laboratory, Division of Cyber and
Computational Sciences, under the supervision and guidance of Joseph Trien, Director of the
Cyber Sciences Division. The intern’s project was initiated on June 1, 2015, and continued
through August 7, 2015 with the following objectives: 1) Access the GitLab website and read
all documentation related to the project; 2) Ensure that all scripts and programs are compiling
correctly, with minimal timing issues; 3) Research how to use 64-bit programs in the input
structure; 4) Compile the program in C or C++ with the current program structure; and 5)
Develop a final paper based on changes made due to 64-bit architecture.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 3

3. RESEARCH DESCRIPTION

A. The ‘H’-Chart Algorithm

The H-Chart is an “algorithm [that] improves upon the simple syntactic construction of a flow
chart by only looking at individual machine code instructions.” [4] The following diagram
below shows the functional model architecture for analyzing malware behavior.

Figure 1. Behavior computation system architecture.

The first step in the architecture is to insert a program into the analysis; for testing purposes,
Windows executables are used (i.e., .exe). Once the program has been unpackaged, the
instructions are transformed into functional semantics and returned. The instructions refer to
the assembly language found in any operating system that denotes the human readable code
that is used by the computer. In order to correctly deduce the correct instructions, the semantics
for instructions are adapted at the machine-level, since the machine decodes the compiled
program and executes.

The following step is used to determine the control flow of the program. The true form of a
program is created using structured programming, which includes a form of programming as
well as drawing a flow control of how a program runs. Programming can be done in a number
of ways, but when the compiler has to interpret the high-level language into machine code, a
number of problems can occur, such as errors in breakpoints and calling unneeded subroutines
that waste resources. For this reason, flow charts help minimize the number of potential
redundancies that can occur in loops and timing delays. In some cases, some iterated loops can
then be reduced to functions that can help create a linear path instead of loops that can be more
difficult to analyze. Figure 2 below shows the basic looping flow control.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 4

Figure 2. Example for computing flow control.

The next step is to determine the structured form for the program. Structured programming is
similar to the ‘C’ programming with the restriction of not using the ‘goto’ statement; however,
any time that expressions are compared or are used in a loop there are semantics that are
introduced to show the end of those sections. Structured programming is done using PDL,
which stands for ‘Program Design Language’. It is a method for designing and documenting
methods and procedures in software. It is related to pseudocode, but unlike pseudocode, it is
written in plain language without any terms that could suggest the use of any programming
language or library. This language is a very-high level language that supports other high-level
languages such as Fortran, Ada, C, and Pascal. The simplicity of PDLs is that they output a
written format of the executable code. Figure 3 below shows an example of a statement that is
iterated after a ‘for’ loop.

For each statement that needs to be executed, there must be a ‘do’ syntax that represents the
section of the code that needs to be executed. This is how an entire program is structured;
however, depending on the size of the files and libraries, this file can become increasingly
large, almost to the point where the exported program is incomprehensible. Instead, this is

...
for
i:ε 1 to 20 by 2
do
j := table(i) + table (i+1)
print j
od
…

Figure 3. Example of a structured program using PDL.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 5

where semantic reduction theorems (or SRT, for short) come into play. Semantic reduction
theorems help reduce the number of iterations that occur, as well as simplifying some functions
and calls into an assembly modular code. A simple example is when a piece of code causes a
loop to be called every time that a check is done for a specific string in a certain location. This
can be reduced to a function call that can be stored as a memory location instead of continually
adding these statements to memory that can fill the stack up, rather than leaving space for other
functions to process and compute.

Once this step is complete, the program will be completely dissected, which is done by
computing the behavior. In order to compute the behavior, the code needs to recompile and
execute but the processes do not take place. If the processes execute in the same order and
produce the same targets, then the output would match the input and the source code would be
deemed the original code of the program. You can configure for which output language (most
executables are written in either C or C++). This is completed at the application level because
authors can insert different semantic algorithms to reduce the instructions using different
scripts.

B. The Disassembler

A disassembler is a program that functions in the opposite manner of an assembler; it takes in
a specified program and returns the assembly language from the machine code. Malware today
can check if it is really in the computer or is being emulated through third-party software such
as VMware or Virtual Box. A disassembler is a powerful tool that attempts to recreate the
assembly code from the binary machine code.

Figure 4. Example of a disassembler extracting machine code into assembly code.

One of the issues that occurs with disassembly is that the method is not bidirectional, so it is
not guaranteed that the assembly code will be determined as the absolute replication from the
binary. In turn, this occurs to a number of variables that can occur between the source code,

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 6

the compiler, and the assembler. Often times, there will be a number of jumps that occur and
these jumps cause a rift in the code that can sometimes be lost and not written1.

The disassembler is intelligent enough to recognize the different areas of code such as data,
section headers, and the Common Object File Format (COFF) headers as shown below in
Figure 5. From 0x00 to 0x17 is the COFF header, which is standard for every file to be
identified. This data is the metadata that keeps track of a file’s history that can be viewed under
the ‘Properties’ section of a file. The following section is specifically used by the COFF (from
0x18 to 0x33), which is used by the standard COFF Header and identifies key points such as
size of the data, size of the file, date and time, etc. for UNIX based systems [2]. The Windows
friendly data (from 0x34 to 0x77) provides the same information as COFF does for UNIX, but
it is used specifically for the Microsoft Windows version, such as the stack and checks the
environment of which Windows is being executed. The directory of the data is the next section
and is highlighted as a section preceded called ‘data’. In this data, you have several data headers
that describe the different types of tables (such as Import Addresses, Resource, Import and
Export, and their respective sizes) as well as any global pointers in the data. The final section
is the section table that gives the size of the data, and the pointers that are used in execution of
the data. These two final sections do not have a definitive size because, unlike the previous
sections, the size of these sections depend on the size of the data itself, and not the physical
quantitative size which is recorded in the first two sections.

Figure 4 gives a perfect representation of the output of what a disassembler is supposed to do;
it returns the assembly code for the inputted executable, with a table for any strings that are
able to be extracted. Using these strings, the user is able to navigate through the program and
see where different function calls are pointing to as well as see what the final output of a certain
process entails. It also helps to know some basic computations in assembly such as: mov, cmp,
xor, push, jnl. In assembly, you also have different instances such as ‘dword’, which is the
instantiation of a temporary variable (in high-level languages, you declare a type such as ‘int’
for integer, and ‘char’ for character).

1 These errors often occur when code is written but never used, such as creating a function that when it is called,
neither returns nor modifies any values. These breakpoints in the machine code never resolve and usually stop in
the graphical representation illogically.
2 When UNIX became an increasingly popular OS, vendors adapted their file extensions to be able to be used by
both Microsoft Windows and UNIX. But in order to accommodate, certain elements in the file structure needed
to be added in order for the OS to recognize, for example, text files (.txt)

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 7

Figure 5. Breakdown of 32-bit portable executable file.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 8

4. RESULTS AND ANALYSIS

The 32-bit code compiler will sometimes generate code because the stack size will not change
in the middle of processing the function – unlike 64-bit instructions, the stack is always being
used – which is why the code is never generated. This is due to the functionality of the push
and pop instructions; in 32-bit, the push and pop can change the size of the stack accordingly,
so the size of the stack can vary, depending on how many functions are called and how much
data is being moved and processed. In a 64-bit, the push and pop functions do not operate the
same because as the size of the stack increases, it never can be reduced until the stack is cleared
at the end. In short, the size of the stack in 32-bit is variable, while in 64-bit it is fixed, which
makes it harder to see the functionality of a program. There are some instances that it is not
clear the number of parameters being passed, so the only option would then be to analyze the
strings for clarification.

One method I have used to analyze coded structure is to add breakpoints and see the changes
in memory (this is what I used when I was analyzing malware that changed the registry and
inserted itself in runtime). The idea would be the following: Hyperion loads the executable and
extracts the assembly code in order to show the registers and data being moved and/or accessed
– and the output would be a programmed code that is outputted; in 64-bit programs, this is not
practicable because the stack is constantly being used in order to structure the data and allocate
the necessary memory to move the data.

There are some advantages in using 64-bit. While most programs in 64-bit use pointers and
registers affiliated with 64-bit, there is sometimes the occasional 32-bit instruction that is
placed in. For example, most integers that are used are 32-bit, because they only require 4 bytes
to store the numerical value; it is costly and a waste of time to call these values as a double or
a float when the amount of available memory is not enough. During these runtimes of 32-bit
instructions, we can see more precisely what is being accessed and moved.

In 32-bit, the most common registers being accessed are the registers 0-7, which are: EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP. When 64-bit was released, the registers remained
the same, except instead of an ‘E’ there is an ‘R’ in front (i.e.: EAX = 32-bit, RAX = 64-bit).
This also led to an expansion of more utilized registers, R8-R15. If any lower bit architecture
wanted access to these additional registers, they would add an additional letter to them (i.e.:
R8 = 64-bit, R8D = 32-bit, R8W = 16bit, R8B = 8bit). Most 32-bit programs do not have the
need for the additional R8-R15 registers but they are available if necessary. The use of these
registers is also an indication that it is being run in a 64-bit environment.

In researching the 64-bit disassembler, it does exist for the ARM processor; however, it is not
entirely compatible. The ARM processor is built for x86/64 compatibility unlike Microsoft
Windows that separated 32 and 64-bit. What ARM did was that it tried to use the resources for
32-bit and include 64-bit when necessary. When Windows 7 was introduced, many users were
still used to programs running in 32-bit mode, but when programs transitioned over to 64-bit,
a compatibility mode was added to allow for stability and continued use of these programs.
These resources are separated into 2 separate folders: 1) System (for 64-bit programs), and 2)
System32 (for 32-bit programs). There are many instances today where 64-bit programs can

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 9

use the resources from System32 because of the versatility of some applications. The negative
aspect of Microsoft Windows is that it needs to have a compatible copy of each 64-bit file in
the event that a 32-bit program needs access to a specific resource.

Another issue that is coming across a 64-bit disassembler is extracting information from a 64-
bit register; in order to extract data from a 32-bit program, there is a push and pull request that
configures the data to be moved to and from the stack. This action causes the stack to release
information because the size of the stack is variable and can pick up on the data that is being
released while it is running. In 64-bit mode, this is not as efficient; the stack is not variable,
but rather fixed. So while there are commands that push and pull the data, the stack is not
cleared in the event of a process error and the event can be duplicated without causing massive
damage to the system. However, because not all the registers that apply to the 64-bit mode
behave in the same manner, it can be difficult to decipher some binary code in the assembly,
even something as simple as adding two numbers (for example, in the event that the result of
the integer passes the limit of 32-bit – which would then be considered an overflow).

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 10

5. CONCLUSION

The 32-bit model for Hyperion has been completed and the only requirements that are needed
are maintenance. To improve Hyperion and expand it to 64-bit mode, several improvements
need to be implemented. First, research on extracting information from a 64-bit stack from
Intel cards needs to be done, because most computers use either AMD or Intel architecture.
The next step is to improve the ‘H’-Chart algorithm and the disassembler to allow manual
configurations since they only perform for 32-bit and need more instructions for the R8-R15
registers. The final step is to implement a graphical user interface to allow the program to be
used more effectively since it is only available as an executable package from the terminal.
Hyperion is a model for the future when it comes to reverse engineering malware attacks.

FIU-ARC-2015-800000394-04c-092 Using a 64-bit Disassembler

 11

6. REFERENCES

[1] D. Kusswurm, Modern X86 Assembly Language Programming: 32-bit, 64-bit, SSE, and
AVX, New York City, New York: Springer Science, 2014.

[2] M. Sikorski and A. Honig, Practical Malware Analysis, San Francisco, California: No
Starch Press, 2012.

[3] D. Quist, L. Liebrock and J. Neil, "Improving Antivirus Accuracy with Hypervisor
Assisted Analysis," Journal in Computer Virology, vol. 7, no. 2, pp. 121-131, May
2011.

[4] R. Linger, T. Daly and M. Pleszkoch, "Function Extraction (FX) Research for
Computation of Software Behavior: 2010 Development and Application of Semantic
Reduction Theorems for Behavior Analysis," Software Engineering Institute, Hanscom
AFB, 2011.

