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 ABSTRACT  

In order to simulate any form of fluid flow, a computational fluid dynamics program 
requires the specification of boundary conditions, as well as the discretization of the fluid 
domain. This paper describes the development of a boundary tagging script, in 
conjunction with the adaptation of an open-sourced meshing algorithm called CartGen 
for use with a Lattice Boltzmann computational fluid dynamics program called 
PRATHAM, developed at Oak Ridge National Laboratory. The completion of the 
boundary tagging script was an important step toward enabling PRATHAM to simulate 
fluid flows in and around real-world geometries. 
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 1. INTRODUCTION  

The Thermal Hydraulics and Irradiation Engineering (THIE) group at Oak Ridge 
National Laboratory (ORNL) has begun development of a computational fluid dynamics 
(CFD) package called the PaRAllel Thermal Hydraulics simulations using Advanced 
Mesoscopic method (PRATHAM). As described in [1], PRATHAM is a three-
dimensional (3D) Lattice Boltzmann method (LBM) based parallel flow simulation 
software. The LBM algorithm in PRATHAM requires a uniform, coordinate system-
aligned, non-body-fitted structured mesh for its computational domain. Furthermore, the 
LBM algorithm requires specific information that identifies the location and type of 
boundary conditions on or within the computational domain. These additional features, 
which are called pre-processing steps, will enable PRATHAM to simulate a wide range 
of fluid flows through real-world geometries. 
 
The task for this internship was to develop pre-processing software for PRATHAM. This 
task was divided into two main categories: boundary tagging and meshing. The meshing 
algorithm used here was based on an open-source mesh generator, CartGen [3]. This 
GNU-licensed, open source code provides much of the functionality needed, i.e., it 
produced uniform Cartesian meshes. However, it needed to be extended for use with 
PRATHAM. As described in [3], CartGen was modified (i) into CAD geometry to a 
uniform structured Cartesian mesh, (ii) to provide a mechanism for PRATHAM to import 
the mesh and identify the fluid/solid domains, and (iii) to provide a mechanism to 
visually identify and tag the domain boundaries on which to apply different boundary 
conditions. 
 
The boundary tagging portion, however, had to be developed from scratch and became 
the primary goal of this internship. In order to meet design and budgetary constraints, the 
new Boundary Tagging Script (BTS) has to (i) utilize widely available file formats, (ii) 
operate independently of any single Computer Aided Design (CAD) package, (iii) 
generate output in a commonly used format, and (iv) utilize a user-friendly Graphical 
User Interface (GUI) to perform the boundary tagging function. These requirements were 
set in order to reduce costs of implementing the preprocessor while making the 
preprocessor more robust (i.e., facilitate its use by other engineers that may use different 
CAD packages). 
 
The final BTS was encoded with seven boundary types, and gave the user the option to 
enter custom boundaries if needed. It was also able to distinguish between multiple 
boundaries of the same type, allowing the user to specify multiple distinct boundaries of 
the same type, such as in a Y-channel situation. 
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2. EXECUTIVE SUMMARY  

This research work has been supported by the DOE-FIU Science & Technology 
Workforce Development Program, an initiative designed by the US Department of 
Energy’s Office of Environmental Management (DOE-EM) and Florida International 
University’s Applied Research Center (FIU-ARC) to create a “pipeline” of minority 
engineers and scientists specially trained and mentored to enter DOE-EM’s workforce. 
During the summer of 2012, DOE Fellow intern, Eric Inclan, spent 10 weeks doing a 
summer internship at Oak Ridge National Laboratory under the supervision and guidance 
of Dr. Prashant Jain. Mr. Inclan’s project was initiated in June 4, 2012 and continued 
through August 10, 2012, with the objective of developing pre-processing software for 
the Lattice Boltzmann Code named PRATHAM.  
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3. RESEARCH DESCRIPTION 

3.1 CartGen 
 
Designed to be robust and easy to use, CartGen creates Cartesian meshes of different 
types [3]. The type needed for PRATHAM was the uniform Cartesian mesh, which is 
essentially an evenly spaced 3D grid. CartGen creates this grid by creating a large box 
(called the “environmental box”) around the geometry to be meshed. It then subdivides 
this box into cubes with dimensions specified by the user. It then colors the resulting 
cubes (called voxels) as white to signify that the voxel is empty, or black to signify that 
the voxel lies inside the geometry. The figure below, taken from [3], shows the results of 
voxelizing a geometry at increasing levels of refinement. 
 

(a)                                                     (b)                                                   (c) 
Fig. 1. Voxelization results using CartGen using (a)25x25x25 cubes 

 (b) 50x50x50 cubes, (c) 100x100x100 cubes
 
The following figure, taken from [1], shows a geometry as it would appear rendered by a 
CAD package, and then as it would appear in stereolithography (STL) format, followed 
by two voxelized versions. 

 Fig.2. A flange-mounted manifold: (a) 3D CAD geometry, (b) triangulated STL surface mesh, (c) 
coarse volume mesh, and (d) fine volume mesh
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The lattice would then be created using the corners of these cubes as grid points. 
However, the code itself was not as robust as the original author claimed. The code made 
available online would not compile properly unless a specific compiler was used, and the 
program contained a number of logical errors that caused geometry files to be incorrectly 
voxelized. 
 

Fig. 3. Incorrectly meshed cubes
 
The images shown above in Fig. 3 were produced by making changes to the code and are 
not exactly representative of the errors found in the software distributed online. The 
errors actually found, however, did include gaps in sections of geometries as simple as a 
cube. In the case of a cube, only one face would be completely meshed, while the 
remainder of the cube would miss diagonal elements. If the geometry contained a hole, 
sometimes these cavities would be incorrectly represented, such as containing extraneous 
material or incomplete wall segments. 
 
Despite these errors, however, CartGen successfully meshed most geometries quickly and 
efficiently, while using a minimal amount of memory. Furthermore, since the code was 
open-sourced, it could be modified to extend its capabilities and any problems with the 
algorithm could be analyzed and resolved. CartGen was designed to read in STL files 
containing geometry information, and write Visual Toolkit (VTK) files containing the 
mesh, which are two popular and simple formats, making it very practical to work with. 
Therefore, in spite of its shortcomings, CartGen possessed many powerful advantages 
and was selected to perform the meshing for the preprocessor. 
 
 
3.2 The STL file format 
 
An STL file essentially models the surface of a 3D geometry by dividing it into several 
triangular facets. The STL file lists the (x,y,z) coordinates of the three vertices for each 
triangular facet and the (x,y,z) components of the vector normal to the facet [1] using the 
minimum number of triangles required to accurately represent the geometry. An STL file 
can be saved in either ASCII or Binary format. The Binary format allows for compact 
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storage while the ASCII format makes the file information user-readable. The figure 
below shows the layout of ASCII and Binary file formats. 
 

 
(a) 

 
(b) 

Fig. 4. STL formats in (a) ASCII [2], and (b) Binary forms 
 
Since some geometries require millions of facets, the binary format was preferred. All 
results shown in this report used binary formatted STL files. The data in the binary 
format is organized as follows, 
 

 80 bytes – header 
 4 bytes – number of facets 
 50 bytes – each facet 

o 12 bytes – normal vector 
o 36 bytes – vertices 
o 2 bytes – unused 

Fig. 5. Binary STL Format
 
 
The two unused bytes of the STL format were pivotal to the design of the BTS. Since 
most programs ignore these two bytes they can be overwritten to store boundary tag 
information without increasing the file size or causing compatibility issues. CartGen 
could then be modified to read these two bytes and tag the mesh as it is created. 
 
 
3.3 The VTK file format 
 
Also considered for boundary tagging purposes, CartGen outputs mesh files in VTK 
format. This file was rejected for boundary tagging use, however, because fewer 
programs open this format than the STL format. Furthermore, the VTK file contains the 
final mesh, not the original geometry; therefore, the BTS would have to perform a 
mathematical mapping from real coordinates to the integer lattice. This additional step 
would increase the risk of errors in tagging boundaries, which would dramatically 
increase the errors generated during LBM simulations. Nevertheless, this format provides 
a compact way of representing the mesh. 

Header 
Number of facets 
Normal F1 – x component 
Normal F1 – y component 
Normal F1 – z component 
Vertex 1, F1 – x component 
Vertex 1, F1 – y component 
Vertex 1, F1 – z component 
Vertex 2, F1 – x component 
Vertex 2, F1 – y component 
…etc. 
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Fig. 6. VTK mesh rendered in Paraview
 
Figure 6 shows two sections of a VTK mesh, with nodes highlighted using Paraview. The 
mesh is rendered as a stack of solid cubes because the VTK organizes lattice nodes by the 
voxel with which they are associated. However, as stated before, only the nodes are 
needed for LBM simulations. Figure 6 also illustrates one of the difficulties of working 
with voxelized geometries. When using STL files viewed in a CAD package, one can 
usually select an entire surface together with a single click. With a voxel mesh, however, 
the user would have to select each individual node. For a simple face, this could 
potentially be done with a single click+drag command, but in the case of a complicated 
geometry, the user would have to perform several zooms and rotations in order to select 
the nodes of interest. 
 
 
3.3 Other Possibilities 
 
During the course of this internship various methods and file formats were considered for 
use. These included open-source or freeware programs like Salome, enGrid, Paraview 
and gmesh. 
 

 
(a) (b) (c) 
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(d) (e) (f) 

Fig. 7. STL files rendered using various programs  
(a,d) enGrid, (b,e) Salome, (c,f) Paraview

 
Some of these programs generated errors when rendering STL files (possibly due to 
configuration issues), but opened up the possibility of working with file formats such as 
.silo, .msh and others. In the end, it was determined that these avenues limited the user 
and increased the overall complexity of the pre-processing method. 



FIU-ARC-2012-800000394-04c-064  Development of Pre-processing Software for Lattice 
  Boltzmann Fluid Dynamics Solver              
 

 13  

  

4. RESULTS AND ANALYSIS 

4.1 The Pre-processing Algorithm 
 
The pre-processing algorithm created for PRATHAM utilizes a group of CAD geometry 
files in STL format. In order to begin the process, the user must create or import the input 
geometry file (containing the complete geometry relevant to the simulation) using the 
CAD package available to the user. 
 

 
Fig. 8. The complete simulation process flow [1]

 
With this CAD package, the user must select the surfaces of the geometry to be used for 
fluid boundary conditions and each surface as a separate geometry file in STL format. 
After this is done, the user places all of these files (the original input geometry file along 
with the boundary files) in the same directory as the BTS, and executes the BTS. The 
BTS will then provide the tagged STL to CartGen, which will produce the voxel mesh, as 
shown in Figure 8. 
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4.2 The BTS Algorithm 
 
The BTS algorithm itself is fairly simple. Once all the files are located within the 
directory of the BTS and the BTS is executed, the user will specify which of those files is 
the main geometry by entering its name. The BTS will assume all remaining files are 
boundary files. 
 

 
Fig. 9. The BTS Algorithm

 
 
The BTS iterates through the main geometry file (called the Principal Geometry in Figure 
9) facet by facet. For each facet, the BTS reads through each boundary file and looks for 
an identical facet within those files. If a matching facet is found, it is tagged accordingly. 
If no matching facet is found, it is tagged as a wall. Once all facets in the principal 
geometry have been tagged, the program will produce a tagged geometry file. The user 
can distinguish this file from the original because it will contain the text “_tagged” at the 
end of the file name.  
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4.3 BTS User-Guide 
 
The user should follow these steps when using the compiled BTS (the code compiles on 
Windows and Ubuntu systems, but may not compile on Mac OS or other Linux 
distributions): 
 

 Make sure all necessary STL files are in the same directory as the executable 
(current version of program only). 

 That is, include the file containing the entire geometry (main geometry), 
and the files containing boundary geometries. 

 Upon launching the program: 
 Enter the name of the main geometry file (all other stl files will be 

assumed to be boundaries). 
 If there are issues opening the files, the user will be prompted to check the 

files, and the program will exit. 
 If file names cannot be interpreted by the program, user will be prompted 

to enter the desired tag code (for example, the program can read 
pressure_inlet.stl, but will not identify press_in.stl as a pressure inlet). 

 No other user input is required.  
 
The BTS uses the following codes for boundary tagging,  
 

 Velocity Inlet = a 
 Velocity Outlet = b 
 Pressure Inlet = c 
 Pressure Outlet = d 
 Symmetry = e 
 Periodic = f 
 Wall = 0  

  
In order to add a new boundary tag to the source code, the user should follow these steps. 
 

 The easiest way to add a tag is to include the following line of code at the end of 
the “Other Conditions” section in Boundary_Type(). 

 
if ( copy.find(“tag name”) != std::string::npos ) return ‘tag code’; 

 
 Make sure the tag name is written in all caps. 
 The tag code must be a single ASCII character. 

 
The user should note that if multiple distinct boundary types are specified in the file name 
(e.g. velocity_pressure.stl) the program may simply tag it based on the first identifier 
found. 
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4.3 BTS Test Cases 
 
The BTS was given a number of test cases to verify its functionality, two of which are 
shown below. One of the first was the STL of a sphere. 
 

 
Fig. 10. BTS Test Case including the main 676 facet geometry, 

and two arbitrarily drawn boundaries
 
The BTS successfully tagged this complete geometry in less than two seconds using a 
powerful but fairly common desktop PC. 
 

Fig. 11. BTS Test Case including the main 151,348 facet geometry, 
and two arbitrarily drawn boundaries

 
The BTS successfully tagged this complete geometry in roughly thirty minutes using the 
same machine. A larger geometry (~1.5 million main geometry facets and ~3,000 
boundary facets) was successfully tagged in roughly four hours. 
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5. CONCLUSION 

Over the course of this internship an efficient, low-cost, robust pre-processing algorithm 
was identified. Several approaches and open-source CAD packages were evaluated 
before the algorithm was finalized. This pre-processing algorithm includes using existing 
CAD software, an open-sourced meshing algorithm, and a boundary tagging script 
developed by DOE Fellow, Eric Inclan. 
 
The boundary tagging script was tested on a set of STL files ranging from simple, 
abstract geometries to complex, real-world geometries and was shown to be effective. 
Furthermore, the script was developed with type-checking and other features to make it 
robust and safe to use from a computer and network security perspective. In the future, 
the script can be parallelized, and extended to use hash tables in order to improve its 
speed. Another improvement would be to include a subroutine within the program that 
checks for overlapping boundaries. 
 
With this step of the process completed, the remaining steps are to finish debugging 
CartGen. CartGen has already been extended to read the tagged STLs. Now, CartGen 
must be extended to write a tagged mesh using this information. Once this is complete, 
PRATHAM will be able to simulate real-world geometries. 
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