

A Comparison of NH₄OH and NaOH Treatments for Uranium Immobilization in the Presence of Kaolinite Silvina Di Pietro – DOE Fellow Dr. Hilary Emerson and Dr. Yelena Katsenovich – Mentors Florida International University

L/kg)] (Zachara *et al.*, 2007).

Figure 3. Process that occurs with injection

Equilibrium Partitioning of U following injection of NH₃ or NaOH

- - Samples 4-6 adjusted by 2.5 M NH4OH
- 2. Monitored for \sim 3 days to ensure that equilibrium was reached
- 3. Aliquot centrifuged and spun to remove solids >120 nm
- 4. Aqueous phase analyzed by KPA (U), ICP-OES (Al and Si), ammonia
- gas-sensing electrode (total NH_3/NH_4^+)

Centrifugation ThermoScientific particles >120 nm, 5000 rpm

Applied Research Center

• Samples 1-3 adjusted by 2.5 M NaCl + 0.025 M NaOH

Table 1. Synthetic Porewater Constituents

Salts	Conc (mmol/L)	Ionic Strength (mmol/L)
KHCO ₃	0.22	0.22
NaHCO ₃	1.10	1.10
CaCl ₂	1.40	4.19
$MgCl_2$	0.57	1.70
total	3.28	7.20

<u>Data is presented below as a K_d (mL/g):</u>

 K_d = partitioning coefficient = $\frac{solid conc.}{solid conc.}$ aqueous conc K_d >> will be immobile, K_d << will be mobile

Note: In this system, we are using an "apparent" K_d as it represents multiple processes (i.e., precipitation, sorption and complexation).

Conclusions

- At pH ~7.5 significantly greater sorption occurs for NaCl as compared to synthetic porewater due to greater formation of U-carbonate species in synthetic porewater
- At pH ~11.5 in NaCl, aqueous U in NH_4OH solution increases due to desorption from kaolinite as neutral or negative U-carbonate species form [Figure 9]
- At pH ~11.5 in synthetic porewater, significant removal of U occurs with both treatments but is higher of NH₄OH possibly due to a decrease in solubility due effect of molecular species on solubility (i.e. NH₃) [Figure 10]
- Significant dissolution of kaolinite occurs at eleveated pH and Si and Al may co-precipitate with U species [Figure 11]. It is likely that co-precipitation occurs at elevated pH for synthetic porewater but is also expected to occur as pH decreases as NH₄OH evaporates in NaCl system leading to oversaturation of Al/Si.

Significance for Remediation:

- Ammonia gas injection may be an effective remediation technique for U in the Hanford vadose zone due to its significant removal of U from the aqueous phase (~10⁴) mL/g compared to 10^{-1} to 10^{0} mL/g in natural conditions)
- As ammonia evaporates, pH returns to neutral allowing for U-aluminosilicate complexes precipitates. If (co)precipitation occurs, then U mobility decreases
- Ammonia gas will not increase the liquid flux to the groundwater

Future Work

- Batch experiments for additional minerals and sediments (illite, montmorillonite, quartz, muscovite and natural sediments relevant to Hanford 200 Area)
- Sequential extractions to understand the lability of sorbed and coprecipitated U species
- Speciation modeling of the aqueous U
- Mineral and sediments characterization (XRD, BET, SEM + EDS) • Kinetic batch experiments

Acknowledgements

DOE-FIU Science & Technology Workforce Development Program and Dr. Leonel Lagos – Director of Research, Applied Research Center