Department Of Energy (DOE) Pipeline Unplugging Requirements

Pipelines used to transport radioactive waste

Jose Rivera, Florida International University, Intern at Idaho National Lab (INL)

AVAILABLE PIPELINE UNPLUGGING METHODS

NuVision Engineering

NuVision’s technology acts as an ocean wave on the beach erosion. It can operate on a long pipeline that has multiple blockages, including a slurry of heavy metals, to transport clean and radioactive liquids and solids. This sonic resonance travels through the water stream and transfers vibration to both the pipe and the blockage.

AEMM Technology’s Hydrokinetic™

The Hydrokinetic™ process uses a sonic resonance with cleaning water that moves through the water stream and transfers vibration to both the pipe and the blockage.

AquaMiser

The Aqua Miser line of water blasting equipment combines 15,000 to 40,000 psi water injection at a high rate in their pipes for this purpose. Due to high levels of radiation the pipes are difficult to access for maintenance or unplugging. Plugging of the pipes creates a difficult and hazardous problem to correct.

METHODS USED AT DOE SITES

INL: Hydro pneumatic rooter (hydrojet) high pressure flushing, chemical dissolution

Hanford: Plugged pipelines are abandoned

SRS: Hydrojet (high pressure hose placed in pipe)

WHY DO THESE PIPELINES PLUG

Numerous causes include:

- **Settling of solids because the flow rate was too low or the solids volume fraction was too high**
- **Operational upsets – Interruption of the waste tank, inadvertent entrainment of solids in the feed,** and changes in the environmental temperature.
- **Chemical instability – precipitation, gel formation, or other transformations due to temperature changes**
- **Safety – Hazards to workers (pressure, temperature, moving equipment), ent, and changes in the environmental temperature**
- **Compatibility with current systems – Corrosion, utilities, isolation of systems, new flanges needed**
- **Operability – How complex, flexible (adapt to various systems), easy to operate**
- **Maintainability – Easiness to maintain, parts availability**

CRITERIA OR REQUIREMENTS THAT NEW METHODS MUST MEET TO BE USED AT DOE SITES

- **Pressure requirements:** The maximum pressure allowed at Hanford site is about 350 psi. The pressure allowed at INL is 200 psi (full line pressure).
- **Training of personnel:** Training should be easy; simple is better, site specific training should be identified.
- **Environmental:** Determine the volume of waste and waste characteristics.
- **Safety:** Hazards to workers (pressure, temperature, moving equipment), radiation/contamination concerns.
- **Compatibility with current systems:** Corrosion, utilities, isolation of systems, new flanges needed.
- **Operability:** How complex, flexible (adapt to various systems), easy to operate.
- **Reliability:** Works consistently.
- **Maintainability:** Easiness to maintain, parts availability.

Evaluation criteria/requirements for tank farm pipeline unplugging:

<table>
<thead>
<tr>
<th>Evaluation criteria/requirements for tank farm pipeline unplugging</th>
<th>Rank</th>
<th>Weight (out of 5)</th>
<th>Total (Rank x Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>11</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>Operability</td>
<td>8</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Compatibility With Current Systems</td>
<td>10</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Pressure requirements</td>
<td>9</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Tested Effectiveness</td>
<td>7</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Environmental</td>
<td>6</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Reliability</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Cost</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Maintainability</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Retrievability</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Training of personnel</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The criteria on the table above were ranked and weighted as high-to-low in importance to the Savannah River Site Liquid Waste Operations with input from the LW Structural Integrity engineering group.