Implementation of Parallel Computing for Multiphase Flows using the Lattice Boltzmann Method

Jaime Mudrich (DOE Fellow), Rinaldo G. Galdamez (DOE Fellow), and Seckin Gokaltun, Ph.D.
Applied Research Center, Florida International University, Miami, FL

Introduction
- 33 million gallons of radioactive waste at Hanford site
- Stored in leaking single shell tanks (SST)
- Double shell tanks (DST) introduced in 1968
- Unlike the SSTs, DSTs show no leaking
- Waste is being transported from SSTs to DSTs
- Transport of heterogeneous waste clogs piping
- Pulsed-air mixing used to “stir” heterogeneous material
- LBM simulates bubbles rising to predict mixing

Parallel Processing Background
- Master processor divides the problem domain amongst multiple slaves
- Message passing interface (MPI) allows CPUs to bridge information across sub domains
- Reduction of processing time is ultimately limited by communications between processors and the components of the program that must run sequentially
- Effectiveness of parallelization is measured by speedup, S(N), for N processors
- When increasing the number of CPUs shows minimal performance increase, optimal quantity has been reached

Amdahl’s Law:
\[S(N) = \frac{T(1)}{T(N)} \]

Laplace’s Law:
\[\Delta P = \frac{\sigma}{R} \]

Methodology
- Lattice Boltzmann method is based on the Boltzmann transport equation
- Domain is discretized with lattice nodes instead of rigorous meshing
- Independence from mesh allows for complex domains like porous media
- Masses at nodes collide and stream information to neighbors

Validation of the Parallel LBM Code
- Overlapping profiles for serial and parallel case indicates accurate results for parallel code
- For 640,000 nodes, the parallel code reduces the job from thirty hours to only three hours
- Speedup trends, near-linear behavior confirms correct parallelization

Conclusions and Future Work
- Parallelization with the optimal number of processors results in significant savings in computer time (10 times for N=25 and 640,000 lattice nodes)
- Parallelization allows for simulation of larger domains or longer times
- Future work will include extension of the code from 2D to 3D
- In addition, fluid-solid interactions will be also implemented

Acknowledgements
This research was supported by the U.S. Department of Energy through the DOE-FIU Science and Technology Workforce Development Program, under grant No. DE-EM0000598.

Special thanks to Leonel Lagos, Ph.D., PMP®, Director of the DOE-FIU Science and Technology Workforce Development Program.