

STUDENT SUMMER INTERNSHIP TECHNICAL REPORT

pyLEnM: A Python Package for Long-Term
Soil and Groundwater Monitoring

DOE-FIU SCIENCE & TECHNOLOGY

WORKFORCE DEVELOPMENT PROGRAM

Date submitted:
December 4, 2020

Principal Investigators:

Aurelien Meray (DOE Fellow Student)
Florida International University

Haruko Wainwright (Mentor)

Lawrence Berkeley National Laboratory

Ravi Gudavalli, Ph.D. (Program Manager)
Florida International University

Leonel Lagos, Ph.D., PMP® (Program Director)

Florida International University

Submitted to:
U.S. Department of Energy

Office of Environmental Management
Under Cooperative Agreement # DE-EM0000598

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor any agency thereof, nor any of their
employees, nor any of its contractors, subcontractors, nor their employees makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe upon privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or any other agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States government or any agency thereof.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 2

ABSTRACT

Recent technological advances - in situ groundwater sensors, geophysics, drone/satellite-based
remote sensing, reactive transport modeling, and AI - have a great potential to establish the new
paradigm of long-term monitoring with improved effectiveness and reliability at contaminated
groundwater sites. In situ sensors prove to be a powerful alternative to traditional groundwater
sampling and laboratory analysis; particularly for monitoring master variables that are often
leading indicators of changes prior to plume movement. With these advancements, there are still
challenges and problems to solve such as where to place new sensors, which in situ variables
contribute the most information, and how to effectively predict plume movement through
contaminant concentration estimations. The research described herein involves the development
of a suite of machine learning algorithms in the form of a python package to analyze monitoring
datasets effectively. Particular focus was on extracting critical information from a historical
dataset, by analyzing multiple time series of groundwater contamination data and groundwater
quality parameters such as pH, water table, and specific conductance. The algorithms developed
analyze and visualize the correlations between different analytes and help identify key parameters
that control contaminant concentrations and plume mobilities. In parallel, regression models were
developed to predict when the contaminant concentrations are expected to reach below the
regulatory standard. In addition, principal component analysis and clustering analysis were used
to group existing wells that have similar groundwater dynamics to more effectively select among
existing wells for new sensor installations.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 3

TABLE OF CONTENTS

ABSTRACT .. 2

TABLE OF CONTENTS .. 3

LIST OF FIGURES .. 4

1. EXECUTIVE SUMMARY .. 5

2. RESEARCH DESCRIPTION ... 6

3. RESULTS AND ANALYSIS ... 15

4. CONCLUSION ... 16

5. REFERENCES ... 17

APPENDIX A ... 18

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 4

LIST OF FIGURES

Figure 1. pyLEnM published on the Python Package Index. (https://pypi.org/project/pylenm/) ... 7

Figure 2. F-Area dataset sample. .. 7

Figure 3. Overview of pyLEnM functions .. 8

Figure 4. get_analyte_details function for iodine-129. .. 9

Figure 5. get_data_summary function for 6 analytes. .. 9

Figure 6. Concept of resampling and interpolating. ... 10

Figure 7. plot_data function for tritium at well FSB 95DR. .. 11

Figure 8. plot_MCL function for nitrate at well FSB 95DR. .. 11

Figure 9. plot_corr_by_year function for the year 2012 looking at the top 6 analytes. 12

Figure 10. plot_PCA_by_year function for the year 2015 looking at the top 6 analytes. 13

Figure 11. (Left) cluster_data function for iodine concentrations filtered at ‘D’ wells with 4

clusters. (Right) plot_coordinates_to_map function with the data from cluster_data. 14

Figure 12. plot_corr_by_year function for the year 2015 looking at the top 6 analytes. 15

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 5

1. EXECUTIVE SUMMARY

This research work has been supported by the DOE-FIU Science & Technology Workforce
Development Initiative, an innovative program developed by the US Department of Energy’s
Environmental Management (DOE-EM) Office and Florida International University’s Applied
Research Center (FIU ARC). During the summer of 2020, a DOE Fellow intern, Aurelien Meray,
spent 10 weeks doing a remote summer internship at Lawrence Berkeley National Laboratory
under the supervision and guidance of Research Scientist, Haruko Wainwright. The intern’s
project was initiated on June 8, 2020 and continued through August 14, 2020, with the objective
of creating a python package to perform soil and groundwater data analysis and visualization.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 6

2. RESEARCH DESCRIPTION

2.1. Introduction
The ultimate goal of the research was to propel the AI effort for the Advanced Long-Term
Monitoring Systems (ALTEMIS) project by developing a python package to perform data analysis
and provide visualization tools for soil and groundwater datasets. Before the package could be
generalized and used across multiple sites, a dataset from the Savanah River Site (SRS) F-Area
was utilized to validate the python package. For over 30 years, nuclear facilities discharged low-
level radioactive wastewater at the site, resulting in soil and groundwater contamination with
various radioactive and non-radioactive contaminants. Some of these contaminants include
uranium, tritium, strontium-90, and iodine-129. Since the 1990s, the Department of Energy (DOE)
has installed wells mounted with sensors across the site measuring a variety of parameters such as
pH, water table, and specific conductance. For the ALTEMIS project, creating the package is one
of many milestones for establishing a long-term monitoring solution for DOE legacy sites.

2.2. Python Package
The long-term objective of creating the pyLEnM package is to help environmental scientists
analyze their unique datasets at different DOE sites. A python package is a library of functions
that is generalized enough to be used across multiple domains. Creating a package brings many
advantages to users; modularity is one of them. Modularity allows the user to focus primarily on
the problem at hand rather than on the implementation of how to solve the task. Maintaining this
separation between the function logic and usability simplifies and can accelerate the user
experience. Another benefit of using a package in developing code is the reusability aspect. The
same functionality can be used anywhere in the code without explicitly duplicating code blocks.
Python packages are easily accessible to anyone thanks to the Python Package Index (PyPi). PyPi
is the central repository of software for the Python programming language. As can be seen in
Figure 1 below, one accomplishment of this internship was publishing of the pyLEnM package on
PyPi. Having this repository makes the maintenance of the package’s code very manageable.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 7

Figure 1. pyLEnM published on the Python Package Index. (https://pypi.org/project/pylenm/)

2.3. F-Area Dataset
As previously mentioned, the data used for this project was the Savanah River Site’s F-Area well
dataset. The original comma-separated values (csv) file contains over 30 columns, but for analysis,
only five (5) useful columns were preserved. These include the analyte collection date, well name
(station_id), analyte name, concentration reading (result), and the concentration unit (result_unit).
Figure 2 shows a sample of the dataset containing the columns deemed most useful.

Figure 2. F-Area dataset sample.

https://pypi.org/project/pylenm/

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 8

The dataset contains 422 different analytes with the most important ones being tritium, uranium-
238, iodine-129, specific conductance, pH, and water table (depth_to_water). In addition, there are
over 80 wells collecting and measuring analyte data at multiple depths denoted by the postfix letter
of the well name (A being the lowest and D being the highest depth). Lastly, the earliest collection
date is in 1990 and the last recorded entry is in 2015.

2.4. Package Functions
Many different functions were created as part of the pyLEnM package to perform various tasks.
These functions can be broadly categorized into two groups: 1) the data exploration and
transformation functions and 2) the visualization functions. This section will describe the most
important of these functions. A list of all the functions can be seen in Figure 3 and the package
documentation can be found in Appendix A.

Figure 3. Overview of pyLEnM functions.

2.4.1 Data exploration and transformation functions
The function get_analyte_details, seen in Figure 4, provides well information for a given analyte
such as the collection date range and the number of samples collected by the well. This function
is useful for quickly determining the wells with the highest amounts of data. Another data
summarization function is get_data_summary, which looks at certain analytes in its entirety. It
provides information such as the number of wells the analyte is collected at, with statistical
information on the measurements such as the average, quartiles, and minimum and maximum
values. A sample result from this function can be seen in Figure 5.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 9

Figure 4. get_analyte_details function for iodine-129.

Figure 5. get_data_summary function for 6 analytes.

One of the main challenges when working with time series data is the inconsistency at which
samples are recorded. In this case, some wells were installed in the early 90s while others were
only installed a decade later. In addition, some wells have sensors that only record a certain number
of analytes and not others. To complicate things further, not every sensor records at the same time
interval; some are taken on a biweekly basis while others are recorded as little as once every six
months. As one can see, these varying factors can make analysis very difficult, as algorithms
require consistency. To combat these issues, the data must be transformed to create equally spaced
intervals, a process known as resampling. We resampled each variable at the same interval so that
they align on the same dates. As one can imagine, this process creates empty slots of data at certain

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 10

dates, so interpolation is necessary. Interpolation is estimating the values between two known
points. In this project, we decided to interpolate linearly, but this parameter can easily be changed.
This idea of data transformation by resampling and interpolating is shown in Figure 6 below. The
function interpolate_wells_by_analyte in pyLEnM takes advantage of this concept to generate
consistent data.

Figure 6. Concept of resampling and interpolating.

2.4.2 Data visualization functions
The pyLEnM package contains a variety of visualization functions. The plot_data function allows
the user to view the log-concentration values for an analyte at a well with the outliers highlighted
in red. As can be seen in Figure 7, tritium levels seem to be diminishing at the FSB 95DR well.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 11

Figure 7. plot_data function for tritium at well FSB 95DR.

Having a quick way to predict when log-concentration values will reach the analyte’s regulatory
limit, or maximum concentration limit (MCL) was a crucial aspect of project. The plot_MCL
function extends the plot_data function by projecting the regression’s line of best fit into the future.
Each analyte has its own MCL value that is manually specified by the user, and the function finds
the intersection point between the constant MCL and the line of best fit. The 95% confidence
interval is also calculated which returns a date range rather than just one fixed date. Figure 8 below
shows a good example of this function.

Figure 8. plot_MCL function for nitrate at well FSB 95DR.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 12

Another useful tool that was created for the package is a set of functions for correlation analysis.
For all of the correlation functions, plot_corr_by_well, plot_corr_by_date, and
plot_coor_by_year, the same appearance is shared; it combines a traditional pairplot with a
correlation matrix. A pairplot shows the pairwise relationship between two variables and a
correlation matrix shows the correlation coefficients, values between 0 and 1, for these two
variables. These two plots individually have duplicate information along the diagonal, so
combining the two plots into one made sense. The correlation matrix and pairplot are located above
and below the diagonal (top left to bottom right) respectively. Figure 9 shows the
plot_coor_by_year for 2012.

Figure 9. plot_corr_by_year function for the year 2012 looking at the top 6 analytes.

An additional way to gain insight on the relationship between different analyte concentrations is
through a biplot, which is a combination of a principal component analysis (PCA) plot and a
loading plot. For this project, we chose to represent all of the data with just two principal
components so that it could easily be viewed on a graph. This plot clusters samples together based
on similarity. The loading plot depicted by the red arrows in Figure 10 represents how strongly
each characteristic influences a principal component.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 13

Figure 10. plot_PCA_by_year function for the year 2015 looking at the top 6 analytes.

Since there are many wells at the F-Area site, it can be hard to keep track of the concentration
values for each individual well. Using a clustering algorithm such as K-means clustering can help
group wells based on similar behavior. Once clusters of wells are formed using the cluster_data
method, it helps to visualize the wells on a map to gain a better understanding of the cluster
distributions. This information can be seen in Figure 11 below.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 14

Figure 11. (Left) cluster_data function for iodine concentrations filtered at ‘D’ wells with 4 clusters. (Right)

plot_coordinates_to_map function with the data from cluster_data.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 15

3. RESULTS AND ANALYSIS

The functions that were created as a part of the package proved to be very effective. The project’s
effort thus far is showing promising results.
Using the correlation functions, it quickly became evident that specific conductance and tritium
concentrations are closely related as can be seen in Figure 12. This information is extremely
beneficial since specific conductance can be measured in-situ, while traditionally tritium
concentrations need to be measured from collected water samples from each well. Between
collecting the water samples and running the experiments in the laboratory, this process can take
days or even weeks to gain tangible results. Identifying correlations between analytes, in this case,
tritium and specific conductance, implies that in-situ sensors can predict contaminant
concentrations with a high degree of confidence much closer to real-time and at a lower cost.

Figure 12. plot_corr_by_year function for the year 2015 looking at the top 6 analytes.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 16

4. CONCLUSION

The pyLEnM package is meant to serve as a tool for accelerating and simplifying the analysis of
soil and groundwater data. During the internship, we were able to build the foundation for the
package by creating useful functions for analysis. The package contains tools to summarize the
dataset, remove outliers, interpolate temporally, and many interesting visualization functions. An
overview of the functions available in pyLEnM is shown in Figure 3. At the moment pyLEnM
works well with the F-Area dataset but the hope is to expand its capability to work on other similar-
structured datasets. In the near future, we would like to see the package grow in complexity, such
as incorporating more machine learning-based algorithms to further expose meaningful insights in
the data.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 17

5. REFERENCES

[1] Denham, Miles E., et al. “A New Paradigm for Long Term Monitoring at the F-Area
 Seepage Basins, Savannah River Site.” 2019, DOI: 10.2172/1504623.

[2] Schmidt, Franziska, et al. “In Situ Monitoring of Groundwater Contamination Using the
 Kalman Filter.” Environmental Science & Technology, vol. 52, no. 13, 2018, pp.
 7418–7425., DOI: 10.1021/acs.est.8b00017.

[3] Wainwright, Haruko, et al. “Objective.” ALTEMIS, 19 Aug. 2020,
 altemis.lbl.gov/about/.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 18

APPENDIX A

Package Documentation
Appendix A serves to describe the functions and parameters in the pyLEnM package.

Color Key:

● Red = required parameters
● Blue = optional parameters (already has defaults)

1. simplify_data(data=None, inplace=False, columns=None, save_csv=False,
 file_name='data_simplified', save_dir='data/')

● Description:
○ Removes all columns except 'COLLECTION_DATE', 'STATION_ID',

'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'.
○ If the user specifies additional columns in addition to the ones listed

above, those columns will be kept.
○ The function returns a dataframe and has an optional parameter to be able

to save the dataframe to a csv file.
● Parameters:

○ data (dataframe): data to simplify
○ inplace (bool): save data to current working dataset
○ columns (list of strings): list of any additional columns on top of

['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME',
'RESULT', and 'RESULT_UNITS'] to be kept in the dataframe.

○ save_csv (bool): flag to determine whether or not to save the dataframe to
a csv file.

○ file_name (string): name of the csv file you want to save
○ save_dir (string): name of the directory you want to save the csv file to

2. get_MCL(analyte_name)

● Description:
○ Returns the Maximum Concentration Limit value for the specified analyte.
○ Example: 'TRITIUM' returns 1.3

● Parameters:
○ analyte_name (string): name of the analyte to be processed

3. get_unit(analyte_name)

● Description:
○ Returns the unit of the analyte you specify.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 19

○ Example: 'DEPTH_TO_WATER' returns 'ft'
● Parameters:

○ analyte_name (string): name of the analyte to be processed

4. filter_wells(units)
● Description:

○ Returns a list of the well names filtered by the unit(s) specified.
● Parameters:

○ units (list of strings): Letter of the well to be filtered (e.g. [‘A’] or [‘A’,
‘D’])

5. remove_outliers(data, z_threshold=4)

● Description:
○ Removes outliers from a dataframe based on the z_scores and returns the

new dataframe.
● Parameters:

○ data (dataframe): data for the outliers to removed from
○ z_threshold (float): z_score threshold to eliminate.

6. get_analyte_details(analyte_name, save_dir='analyte_details')

● Description:
○ Returns a csv file saved to save_dir with details pertaining to the specified

analyte.
○ Details include the well names, the date ranges and the number of unique

samples.
● Parameters:

○ analyte_name (string): name of the analyte to be processed
○ save_dir (string): name of the directory you want to save the csv file to

7. get_data_summary(analytes=None, sort_by='date', ascending=False)

● Description:
○ Returns a dataframe with a summary of the data for certain analytes.
○ Summary includes the date ranges and the number of unique samples and

other statistics for the analyte results.
● Parameters:

○ analytes (list of strings): list of analyte names to be processed. If left
empty, a list of all the analytes in the data will be used.

○ sort_by (string): {‘date’, ‘samples’, ‘wells’} sorts the data by either the
dates by entering: ‘date’, the samples by entering: ‘samples’, or by unique
well locations by entering ‘wells’.

○ ascending (bool): flag to sort in ascending order.

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 20

8. query_data(well_name, analyte_name)

● Description:
○ Filters data by passing the data and specifying the well_name and

analyte_name
● Parameters:

○ well_name (string): name of the well to be processed
○ analyte_name (string): name of the analyte to be processed

9. plot_data(well_name, analyte_name, log_transform=True,

 alpha=0, year_interval=2, plot_inline=True, save_dir='plot_data')
● Description:

○ Plot concentrations over time of a specified well and analyte with a
smoothed curve on interpolated data points.

● Parameters:
○ well_name (string): name of the well to be processed
○ analyte_name (string): name of the analyte to be processed
○ log_transform (bool): choose whether or not the data should be

transformed to log base 10 values
○ alpha (int): value between 0 and 10 for line smoothing
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 =

every year, 5 = every 5 years, ...)
○ plot_inline (bool): choose whether or not to show plot inline
○ save_dir (string): name of the directory you want to save the plot to

10. plot_all_data(log_transform=True, alpha=0,

year_interval=2, plot_inline=True, save_dir='plot_data')
● Description:

○ Plot concentrations over time for every well and analyte with a smoothed
curve on interpolated data points.

● Parameters:
○ log_transform (bool): choose whether or not the data should be

transformed to log base 10 values
○ alpha (int): value between 0 and 10 for line smoothing
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 =

every year, 5 = every 5 years, ...)
○ plot_inline (bool): choose whether or not to show plot inline
○ save_dir (string): name of the directory you want to save the plot to

11. plot_correlation_heatmap(well_name, show_symmetry=True, color=True,

 save_dir='plot_correlation_heatmap')

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 21

● Description:
○ Plots a heatmap of the correlations of the important analytes over time for

a specified well.
● Parameters:

○ well_name (string): name of the well to be processed
○ show_symmetry (bool): choose whether or not the heatmap should show

the same information twice over the diagonal
○ color (bool): choose whether or not the plot should be in color or in

greyscale
○ save_dir (string): name of the directory you want to save the plot to

12. plot_all_correlation_heatmap(show_symmetry=True, color=True,

 save_dir='plot_correlation_heatmap')
● Description:

○ Plots a heatmap of the correlations of the important analytes over time for
each well in the dataset.

● Parameters:
○ show_symmetry (bool): choose whether or not the heatmap should show

the same information twice over the diagonal
○ color (bool): choose whether or not the plot should be in color or in

greyscale
○ save_dir (string): name of the directory you want to save the plot to

13. interpolate_wells_by_analyte(analyte, frequency='2W', rm_outliers=True,

z_threshold=3)
● Description:

○ Resamples analyte data based on the frequency specified and interpolates
the values in between. NaN values are replaced with the average value per
well.

● Parameters:
○ analyte (string): analyte name for interpolation of all present wells.
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’
= every 2 weeks)

○ rm_outliers (bool): flag to remove outliers in the data
○ z_threshold (int): z_score threshold to eliminate outliers

14. interpolate_well_data(well_name, analytes, frequency='2W')

● Description:

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 22

○ Resamples the data based on the frequency specified and interpolates the
values of the analytes.

● Parameters:
○ well_name (string): name of the well to be processed
○ analytes (list of strings): list of analyte names to use
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’
= every 2 weeks)

15. plot_corr_by_well(well_name, remove_outliers=True, z_threshold=4,

interpolate=False, frequency='2W', save_dir='plot_correlation')
● Description:

○ Plots the correlations with the physical plots as well as the correlations of
the important analytes over time for a specified well.

● Parameters:
○ well_name (string): name of the well to be processed
○ remove_outliers (bool): choose whether or not to remove the outliers.
○ z_threshold (float): z_score threshold to eliminate outliers
○ interpolate (bool): choose whether or not to interpolate the data
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’
= every 2 weeks)

○ save_dir (string): name of the directory you want to save the plot to

16. plot_all_corr_by_well(remove_outliers=True,
z_threshold=4, interpolate=False, frequency='2W',
save_dir='plot_correlation')

● Description:
○ Plots the correlations with the physical plots as well as the important

analytes over time for each well in the dataset.
● Parameters:

○ remove_outliers (bool): choose whether or to remove the outliers.
○ z_threshold (float): z_score threshold to eliminate outliers
○ interpolate (bool): choose whether or to interpolate the data
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’
= every 2 weeks)

○ save_dir (string): name of the directory you want to save the plot to

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 23

17. plot_corr_by_date(date, min_samples=48, save_dir=‘plot_corr_by_date’)

● Description:
○ Plots the correlations with the physical plots as well as the correlations of

the important analytes for ALL the wells on a specified date.
● Parameters:

○ date (string): date to be analyzed
○ min_samples (int): minimum number of samples the result should contain

in order to execute.
○ save_dir (string): name of the directory you want to save the plot to

18. plot_corr_by_year(year, min_samples=500, save_dir=‘plot_corr_by_year’)

● Description:
○ Plots the correlations with the physical plots as well as the correlations of

the important analytes for ALL the wells in specified year.
● Parameters:

○ year (int): year to be analyzed
○ min_samples (int): minimum number of samples the result should contain

in order to execute.
○ save_dir (string): name of the directory you want to save the plot to

19. plot_MCL(well_name, analyte_name, year_interval=5, save_dir=‘plot_MCL’)
● Description:

○ Plots the linear regression line of data given the analyte_name and
well_name. The plot includes the prediction where the line of best fit
intersects with the Maximum Concentration Limit (MCL).

● Parameters:
○ well_name (string): name of the well to be processed
○ analyte_name (string): name of the analyte to be processed
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 =

every year, 5 = every 5 years, ...)
○ save_dir (string): name of the directory you want to save the plot to

20. plot_PCA_by_date(date, n_clusters=4, min_samples=48,

filter=False, filter_well_by=['D'], return_clusters=False,
show_labels=True, save_dir=‘plot_corr_by_date’)

● Description:
○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a

date in the dataset. Only uses the 6 important analytes. The data is also
clustered into n_clusters.

● Parameters:
○ date (string): date to be analyzed

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 24

○ n_clusters (int): number of clusters to split the data into.
○ filter (bool): Flag to indicate well filtering.
○ filter_well_by (list of strings): Letter of the well to be filtered (e.g. [‘A’]

or [‘A’, ‘D’])
○ return_clusters (bool): Flag to return the cluster data to be used for spatial

plotting.
○ min_samples (int): minimum number of samples the result should contain

in order to execute.
○ show_labels (bool): choose whether or not to show the name of the wells.
○ save_dir (string): name of the directory you want to save the plot to

21. plot_PCA_by_year(year, n_clusters=4, min_samples=48, filter=False,

filter_well_by=['D'], return_clusters=False, show_labels=True,
save_dir=‘plot_corr_by_year’)

● Description:
○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a

year in the dataset. Only uses the 6 important analytes. The data is also
clustered into n_clusters.

● Parameters:
○ year (int): date to be analyzed
○ n_clusters (int): number of clusters to split the data into.
○ filter (bool): Flag to indicate well filtering.
○ filter_well_by (list of strings): Letter of the well to be filtered (e.g. [‘A’]

or [‘A’, ‘D’])
○ return_clusters (bool): Flag to return the cluster data to be used for spatial

plotting.
○ min_samples (int): minimum number of samples the result should contain

in order to execute.
○ show_labels (bool): choose whether or not to show the name of the wells.
○ save_dir (string): name of the directory you want to save the plot to

22. plot_PCA_by_well(well_name, interpolate=False, frequency='2W', min_samples=48,

 show_labels=True, save_dir=‘plot_PCA_by_well’)
● Description:

○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a
well_name in the dataset. Only uses the 6 important analytes.

● Parameters:
○ well_name (string): name of the well to be processed
○ interpolate (bool): choose whether or to interpolate the data
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

FIU-ARC-2020-800006473-04C-301 pyLEnM: A python package for long-term soil and groundwater monitoring

 25

for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’
= every 2 weeks)

○ min_samples (int): minimum number of samples the result should contain
in order to execute.

○ show_labels (bool): choose whether or not to show the name of the wells.
○ save_dir (string): name of the directory you want to save the plot to

23. plot_coordinates_to_map(gps_data, center=[33.271459, -81.675873], zoom=14)

● Description:
○ Plots the well locations on an interactive map given coordinates.

● Parameters:
○ gps_data (dataframe): Data frame with the following column names:

station_id, latitude, longitude, color. If the color column is not passed, the
default color will be blue.

○ center (list with 2 floats): latitude and longitude coordinates to center the
map view.

○ zoom (int): value to determine the initial scale of the map

	DISCLAIMER
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. EXECUTIVE SUMMARY
	2. RESEARCH DESCRIPTION
	3. RESULTS AND ANALYSIS
	4. CONCLUSION
	5. REFERENCES
	APPENDIX A

