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ABSTRACT 

Recent technological advances - in situ groundwater sensors, geophysics, drone/satellite-based 
remote sensing, reactive transport modeling, and AI - have a great potential to establish the new 
paradigm of long-term monitoring with improved effectiveness and reliability at contaminated 
groundwater sites. In situ sensors prove to be a powerful alternative to traditional groundwater 
sampling and laboratory analysis; particularly for monitoring master variables that are often 
leading indicators of changes prior to plume movement. With these advancements, there are still 
challenges and problems to solve such as where to place new sensors, which in situ variables 
contribute the most information, and how to effectively predict plume movement through 
contaminant concentration estimations. The research described herein involves the development 
of a suite of machine learning algorithms in the form of a python package to analyze monitoring 
datasets effectively. Particular focus was on extracting critical information from a historical 
dataset, by analyzing multiple time series of groundwater contamination data and groundwater 
quality parameters such as pH, water table, and specific conductance. The algorithms developed 
analyze and visualize the correlations between different analytes and help identify key parameters 
that control contaminant concentrations and plume mobilities. In parallel, regression models were 
developed to predict when the contaminant concentrations are expected to reach below the 
regulatory standard. In addition, principal component analysis and clustering analysis were used 
to group existing wells that have similar groundwater dynamics to more effectively select among 
existing wells for new sensor installations. 
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1. EXECUTIVE SUMMARY  

This research work has been supported by the DOE-FIU Science & Technology Workforce 
Development Initiative, an innovative program developed by the US Department of Energy’s 
Environmental Management (DOE-EM) Office and Florida International University’s Applied 
Research Center (FIU ARC). During the summer of 2020, a DOE Fellow intern, Aurelien Meray, 
spent 10 weeks doing a remote summer internship at Lawrence Berkeley National Laboratory 
under the supervision and guidance of Research Scientist, Haruko Wainwright. The intern’s 
project was initiated on June 8, 2020 and continued through August 14, 2020, with the objective 
of creating a python package to perform soil and groundwater data analysis and visualization. 
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2. RESEARCH DESCRIPTION 

2.1. Introduction 
The ultimate goal of the research was to propel the AI effort for the Advanced Long-Term 
Monitoring Systems (ALTEMIS) project by developing a python package to perform data analysis 
and provide visualization tools for soil and groundwater datasets. Before the package could be 
generalized and used across multiple sites, a dataset from the Savanah River Site (SRS) F-Area 
was utilized to validate the python package. For over 30 years, nuclear facilities discharged low-
level radioactive wastewater at the site, resulting in soil and groundwater contamination with 
various radioactive and non-radioactive contaminants. Some of these contaminants include 
uranium, tritium, strontium-90, and iodine-129. Since the 1990s, the Department of Energy (DOE) 
has installed wells mounted with sensors across the site measuring a variety of parameters such as 
pH, water table, and specific conductance. For the ALTEMIS project, creating the package is one 
of many milestones for establishing a long-term monitoring solution for DOE legacy sites.  
 
2.2. Python Package 
The long-term objective of creating the pyLEnM package is to help environmental scientists 
analyze their unique datasets at different DOE sites. A python package is a library of functions 
that is generalized enough to be used across multiple domains. Creating a package brings many 
advantages to users; modularity is one of them. Modularity allows the user to focus primarily on 
the problem at hand rather than on the implementation of how to solve the task. Maintaining this 
separation between the function logic and usability simplifies and can accelerate the user 
experience. Another benefit of using a package in developing code is the reusability aspect. The 
same functionality can be used anywhere in the code without explicitly duplicating code blocks. 
Python packages are easily accessible to anyone thanks to the Python Package Index (PyPi). PyPi 
is the central repository of software for the Python programming language. As can be seen in 
Figure 1 below, one accomplishment of this internship was publishing of the pyLEnM package on 
PyPi. Having this repository makes the maintenance of the package’s code very manageable. 
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Figure 1. pyLEnM published on the Python Package Index. (https://pypi.org/project/pylenm/) 

2.3. F-Area Dataset 
As previously mentioned, the data used for this project was the Savanah River Site’s F-Area well 
dataset. The original comma-separated values (csv) file contains over 30 columns, but for analysis, 
only five (5) useful columns were preserved. These include the analyte collection date, well name 
(station_id), analyte name, concentration reading (result), and the concentration unit (result_unit). 
Figure 2 shows a sample of the dataset containing the columns deemed most useful. 

 
Figure 2. F-Area dataset sample. 

https://pypi.org/project/pylenm/
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The dataset contains 422 different analytes with the most important ones being tritium, uranium-
238, iodine-129, specific conductance, pH, and water table (depth_to_water). In addition, there are 
over 80 wells collecting and measuring analyte data at multiple depths denoted by the postfix letter 
of the well name (A being the lowest and D being the highest depth). Lastly, the earliest collection 
date is in 1990 and the last recorded entry is in 2015. 
 
2.4. Package Functions 
Many different functions were created as part of the pyLEnM package to perform various tasks. 
These functions can be broadly categorized into two groups: 1) the data exploration and 
transformation functions and 2) the visualization functions. This section will describe the most 
important of these functions. A list of all the functions can be seen in Figure 3 and the package 
documentation can be found in Appendix A. 
 

 
Figure 3. Overview of pyLEnM functions. 

 
2.4.1 Data exploration and transformation functions 
The function get_analyte_details, seen in Figure 4, provides well information for a given analyte 
such as the collection date range and the number of samples collected by the well. This function 
is useful for quickly determining the wells with the highest amounts of data. Another data 
summarization function is get_data_summary, which looks at certain analytes in its entirety. It 
provides information such as the number of wells the analyte is collected at, with statistical 
information on the measurements such as the average, quartiles, and minimum and maximum 
values. A sample result from this function can be seen in Figure 5. 
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Figure 4. get_analyte_details function for iodine-129. 

 

 
Figure 5. get_data_summary function for 6 analytes. 

One of the main challenges when working with time series data is the inconsistency at which 
samples are recorded. In this case, some wells were installed in the early 90s while others were 
only installed a decade later. In addition, some wells have sensors that only record a certain number 
of analytes and not others. To complicate things further, not every sensor records at the same time 
interval; some are taken on a biweekly basis while others are recorded as little as once every six 
months. As one can see, these varying factors can make analysis very difficult, as algorithms 
require consistency. To combat these issues, the data must be transformed to create equally spaced 
intervals, a process known as resampling. We resampled each variable at the same interval so that 
they align on the same dates. As one can imagine, this process creates empty slots of data at certain 
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dates, so interpolation is necessary. Interpolation is estimating the values between two known 
points. In this project, we decided to interpolate linearly, but this parameter can easily be changed. 
This idea of data transformation by resampling and interpolating is shown in Figure 6 below. The 
function interpolate_wells_by_analyte in pyLEnM takes advantage of this concept to generate 
consistent data. 

 

 
Figure 6. Concept of resampling and interpolating. 

 
2.4.2 Data visualization functions 
The pyLEnM package contains a variety of visualization functions. The plot_data function allows 
the user to view the log-concentration values for an analyte at a well with the outliers highlighted 
in red. As can be seen in Figure 7, tritium levels seem to be diminishing at the FSB 95DR well. 
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Figure 7. plot_data function for tritium at well FSB 95DR. 

 
Having a quick way to predict when log-concentration values will reach the analyte’s regulatory 
limit, or maximum concentration limit (MCL) was a crucial aspect of project. The plot_MCL 
function extends the plot_data function by projecting the regression’s line of best fit into the future. 
Each analyte has its own MCL value that is manually specified by the user, and the function finds 
the intersection point between the constant MCL and the line of best fit. The 95% confidence 
interval is also calculated which returns a date range rather than just one fixed date. Figure 8 below 
shows a good example of this function. 

 

 
Figure 8. plot_MCL function for nitrate at well FSB 95DR. 
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Another useful tool that was created for the package is a set of functions for correlation analysis. 
For all of the correlation functions, plot_corr_by_well, plot_corr_by_date, and 
plot_coor_by_year, the same appearance is shared; it combines a traditional pairplot with a 
correlation matrix. A pairplot shows the pairwise relationship between two variables and a 
correlation matrix shows the correlation coefficients, values between 0 and 1, for these two 
variables. These two plots individually have duplicate information along the diagonal, so 
combining the two plots into one made sense. The correlation matrix and pairplot are located above 
and below the diagonal (top left to bottom right) respectively. Figure 9 shows the 
plot_coor_by_year for 2012. 

 

 
Figure 9. plot_corr_by_year function for the year 2012 looking at the top 6 analytes. 

An additional way to gain insight on the relationship between different analyte concentrations is 
through a biplot, which is a combination of a principal component analysis (PCA) plot and a 
loading plot. For this project, we chose to represent all of the data with just two principal 
components so that it could easily be viewed on a graph. This plot clusters samples together based 
on similarity. The loading plot depicted by the red arrows in Figure 10 represents how strongly 
each characteristic influences a principal component. 
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Figure 10. plot_PCA_by_year function for the year 2015 looking at the top 6 analytes. 

Since there are many wells at the F-Area site, it can be hard to keep track of the concentration 
values for each individual well. Using a clustering algorithm such as K-means clustering can help 
group wells based on similar behavior. Once clusters of wells are formed using the cluster_data 
method, it helps to visualize the wells on a map to gain a better understanding of the cluster 
distributions. This information can be seen in Figure 11 below. 
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Figure 11. (Left) cluster_data function for iodine concentrations filtered at ‘D’ wells with 4 clusters. (Right) 

plot_coordinates_to_map function with the data from cluster_data. 
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3. RESULTS AND ANALYSIS 

The functions that were created as a part of the package proved to be very effective. The project’s 
effort thus far is showing promising results. 
Using the correlation functions, it quickly became evident that specific conductance and tritium 
concentrations are closely related as can be seen in Figure 12. This information is extremely 
beneficial since specific conductance can be measured in-situ, while traditionally tritium 
concentrations need to be measured from collected water samples from each well. Between 
collecting the water samples and running the experiments in the laboratory, this process can take 
days or even weeks to gain tangible results. Identifying correlations between analytes, in this case, 
tritium and specific conductance, implies that in-situ sensors can predict contaminant 
concentrations with a high degree of confidence much closer to real-time and at a lower cost. 
 

 
Figure 12. plot_corr_by_year function for the year 2015 looking at the top 6 analytes. 
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4. CONCLUSION 

The pyLEnM package is meant to serve as a tool for accelerating and simplifying the analysis of 
soil and groundwater data. During the internship, we were able to build the foundation for the 
package by creating useful functions for analysis. The package contains tools to summarize the 
dataset, remove outliers, interpolate temporally, and many interesting visualization functions. An 
overview of the functions available in pyLEnM is shown in Figure 3. At the moment pyLEnM 
works well with the F-Area dataset but the hope is to expand its capability to work on other similar-
structured datasets. In the near future, we would like to see the package grow in complexity, such 
as incorporating more machine learning-based algorithms to further expose meaningful insights in 
the data. 
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APPENDIX A 

Package Documentation 
Appendix A serves to describe the functions and parameters in the pyLEnM package. 
 
Color Key:  

● Red = required parameters 
● Blue = optional parameters (already has defaults) 

 
 

1. simplify_data(data=None, inplace=False, columns=None, save_csv=False, 
 file_name='data_simplified', save_dir='data/') 

● Description: 
○ Removes all columns except 'COLLECTION_DATE', 'STATION_ID', 

'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'. 
○ If the user specifies additional columns in addition to the ones listed 

above, those columns will be kept. 
○ The function returns a dataframe and has an optional parameter to be able 

to save the dataframe to a csv file. 
● Parameters: 

○ data (dataframe): data to simplify 
○ inplace (bool): save data to current working dataset 
○ columns (list of strings): list of any additional columns on top of  

['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME', 
'RESULT', and 'RESULT_UNITS'] to be kept in the dataframe. 

○ save_csv (bool): flag to determine whether or not to save the dataframe to 
a csv file. 

○ file_name (string): name of the csv file you want to save 
○ save_dir (string): name of the directory you want to save the csv file to 

 
2. get_MCL(analyte_name) 

● Description: 
○ Returns the Maximum Concentration Limit value for the specified analyte. 
○ Example: 'TRITIUM' returns 1.3 

● Parameters: 
○ analyte_name (string): name of the analyte to be processed 

 
3. get_unit(analyte_name) 

● Description: 
○ Returns the unit of the analyte you specify. 
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○ Example: 'DEPTH_TO_WATER' returns 'ft' 
● Parameters: 

○ analyte_name (string): name of the analyte to be processed 
 

4. filter_wells(units) 
● Description: 

○ Returns a list of the well names filtered by the unit(s) specified. 
● Parameters: 

○ units (list of strings): Letter of the well to be filtered (e.g. [‘A’] or [‘A’, 
‘D’]) 

 
5. remove_outliers(data, z_threshold=4) 

● Description: 
○ Removes outliers from a dataframe based on the z_scores and returns the 

new dataframe. 
● Parameters: 

○ data (dataframe): data for the outliers to removed from 
○ z_threshold (float): z_score threshold to eliminate. 

 
6. get_analyte_details(analyte_name, save_dir='analyte_details') 

● Description: 
○ Returns a csv file saved to save_dir with details pertaining to the specified 

analyte. 
○ Details include the well names, the date ranges and the number of unique 

samples. 
● Parameters: 

○ analyte_name (string): name of the analyte to be processed 
○ save_dir (string): name of the directory you want to save the csv file to 

 
7. get_data_summary(analytes=None, sort_by='date', ascending=False) 

● Description: 
○ Returns a dataframe with a summary of the data for certain analytes. 
○ Summary includes the date ranges and the number of unique samples and 

other statistics for the analyte results. 
● Parameters: 

○ analytes (list of strings): list of analyte names to be processed. If left 
empty, a list of all the analytes in the data will be used. 

○ sort_by (string): {‘date’, ‘samples’, ‘wells’} sorts the data by either the 
dates by entering: ‘date’, the samples by entering: ‘samples’, or by unique 
well locations by entering ‘wells’. 

○ ascending (bool): flag to sort in ascending order. 
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8. query_data(well_name, analyte_name) 

● Description:  
○ Filters data by passing the data and specifying the well_name and 

analyte_name 
● Parameters: 

○ well_name (string): name of the well to be processed 
○ analyte_name (string): name of the analyte to be processed 

 
9. plot_data(well_name, analyte_name, log_transform=True, 

     alpha=0, year_interval=2, plot_inline=True, save_dir='plot_data') 
● Description:  

○ Plot concentrations over time of a specified well and analyte with a 
smoothed curve on interpolated data points. 

● Parameters: 
○ well_name (string): name of the well to be processed 
○ analyte_name (string): name of the analyte to be processed 
○ log_transform (bool): choose whether or not the data should be 

transformed to log base 10 values 
○ alpha (int): value between 0 and 10 for line smoothing 
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 = 

every year, 5 = every 5 years, ...) 
○ plot_inline (bool): choose whether or not to show plot inline 
○ save_dir (string): name of the directory you want to save the plot to 

 
10. plot_all_data(log_transform=True, alpha=0, 

year_interval=2, plot_inline=True, save_dir='plot_data') 
● Description:  

○ Plot concentrations over time for every well and analyte with a smoothed 
curve on interpolated data points. 

● Parameters: 
○ log_transform (bool): choose whether or not the data should be 

transformed to log base 10 values 
○ alpha (int): value between 0 and 10 for line smoothing 
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 = 

every year, 5 = every 5 years, ...) 
○ plot_inline (bool): choose whether or not to show plot inline 
○ save_dir (string): name of the directory you want to save the plot to 

 
11. plot_correlation_heatmap(well_name, show_symmetry=True, color=True, 

                save_dir='plot_correlation_heatmap') 
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● Description:  
○ Plots a heatmap of the correlations of the important analytes over time for 

a specified well. 
● Parameters: 

○ well_name (string): name of the well to be processed 
○ show_symmetry (bool): choose whether or not the heatmap should show 

the same information twice over the diagonal 
○ color (bool): choose whether or not the plot should be in color or in 

greyscale 
○ save_dir (string): name of the directory you want to save the plot to 

 
12. plot_all_correlation_heatmap(show_symmetry=True, color=True,  

    save_dir='plot_correlation_heatmap') 
● Description:  

○ Plots a heatmap of the correlations of the important analytes over time for 
each well in the dataset. 

● Parameters: 
○ show_symmetry (bool): choose whether or not the heatmap should show 

the same information twice over the diagonal 
○ color (bool): choose whether or not the plot should be in color or in 

greyscale 
○ save_dir (string): name of the directory you want to save the plot to 

 
13. interpolate_wells_by_analyte(analyte, frequency='2W', rm_outliers=True, 

z_threshold=3) 
● Description:  

○ Resamples analyte data based on the frequency specified and interpolates 
the values in between. NaN values are replaced with the average value per 
well. 

● Parameters: 
○ analyte (string): analyte name for interpolation of all present wells. 
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html 
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ 
= every 2 weeks) 

○ rm_outliers (bool): flag to remove outliers in the data 
○ z_threshold (int): z_score threshold to eliminate outliers 

 
14. interpolate_well_data(well_name, analytes, frequency='2W') 

● Description:  

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
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○ Resamples the data based on the frequency specified and interpolates the 
values of the analytes. 

● Parameters: 
○ well_name (string): name of the well to be processed 
○ analytes (list of strings): list of analyte names to use 
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html 
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ 
= every 2 weeks) 

 
15. plot_corr_by_well(well_name, remove_outliers=True, z_threshold=4, 

interpolate=False, frequency='2W', save_dir='plot_correlation') 
● Description:  

○ Plots the correlations with the physical plots as well as the correlations of 
the important analytes over time for a specified well. 

● Parameters: 
○ well_name (string): name of the well to be processed 
○ remove_outliers (bool): choose whether or not to remove the outliers. 
○ z_threshold (float): z_score threshold to eliminate outliers 
○ interpolate (bool): choose whether or not to interpolate the data 
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html 
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ 
= every 2 weeks) 

○ save_dir (string): name of the directory you want to save the plot to 
 

16. plot_all_corr_by_well(remove_outliers=True, 
z_threshold=4, interpolate=False, frequency='2W', 
save_dir='plot_correlation') 

● Description:  
○ Plots the correlations with the physical plots as well as the important 

analytes over time for each well in the dataset. 
● Parameters: 

○ remove_outliers (bool): choose whether or to remove the outliers. 
○ z_threshold (float): z_score threshold to eliminate outliers 
○ interpolate (bool): choose whether or to interpolate the data 
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html 
for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ 
= every 2 weeks) 

○ save_dir (string): name of the directory you want to save the plot to 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
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17. plot_corr_by_date(date, min_samples=48, save_dir=‘plot_corr_by_date’) 

● Description:  
○ Plots the correlations with the physical plots as well as the correlations of 

the important analytes for ALL the wells on a specified date. 
● Parameters: 

○ date (string): date to be analyzed 
○ min_samples (int): minimum number of samples the result should contain 

in order to execute. 
○ save_dir (string): name of the directory you want to save the plot to 

 
18. plot_corr_by_year(year, min_samples=500, save_dir=‘plot_corr_by_year’) 

● Description:  
○ Plots the correlations with the physical plots as well as the correlations of 

the important analytes for ALL the wells in specified year. 
● Parameters: 

○ year (int): year to be analyzed 
○ min_samples (int): minimum number of samples the result should contain 

in order to execute. 
○ save_dir (string): name of the directory you want to save the plot to 

19. plot_MCL(well_name, analyte_name, year_interval=5, save_dir=‘plot_MCL’) 
● Description:  

○ Plots the linear regression line of data given the analyte_name and 
well_name. The plot includes the prediction where the line of best fit 
intersects with the Maximum Concentration Limit (MCL). 

● Parameters: 
○ well_name (string): name of the well to be processed 
○ analyte_name (string): name of the analyte to be processed 
○ year_interval (int): plot by how many years to appear in the axis e.g.(1 = 

every year, 5 = every 5 years, ...) 
○ save_dir (string): name of the directory you want to save the plot to 

 
20. plot_PCA_by_date(date, n_clusters=4, min_samples=48, 

filter=False, filter_well_by=['D'], return_clusters=False, 
show_labels=True, save_dir=‘plot_corr_by_date’) 

● Description:  
○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a 

date in the dataset. Only uses the 6 important analytes. The data is also 
clustered into n_clusters. 

● Parameters: 
○ date (string): date to be analyzed 
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○ n_clusters (int): number of clusters to split the data into. 
○ filter (bool): Flag to indicate well filtering. 
○ filter_well_by (list of strings): Letter of the well to be filtered (e.g. [‘A’] 

or [‘A’, ‘D’]) 
○ return_clusters (bool): Flag to return the cluster data to be used for spatial 

plotting. 
○ min_samples (int): minimum number of samples the result should contain 

in order to execute. 
○ show_labels (bool): choose whether or not to show the name of the wells. 
○ save_dir (string): name of the directory you want to save the plot to 

 
21. plot_PCA_by_year(year, n_clusters=4, min_samples=48, filter=False, 

filter_well_by=['D'], return_clusters=False, show_labels=True, 
save_dir=‘plot_corr_by_year’) 

● Description:  
○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a 

year in the dataset. Only uses the 6 important analytes. The data is also 
clustered into n_clusters. 

● Parameters: 
○ year (int): date to be analyzed 
○ n_clusters (int): number of clusters to split the data into. 
○ filter (bool): Flag to indicate well filtering. 
○ filter_well_by (list of strings): Letter of the well to be filtered (e.g. [‘A’] 

or [‘A’, ‘D’]) 
○ return_clusters (bool): Flag to return the cluster data to be used for spatial 

plotting. 
○ min_samples (int): minimum number of samples the result should contain 

in order to execute. 
○ show_labels (bool): choose whether or not to show the name of the wells. 
○ save_dir (string): name of the directory you want to save the plot to 

 
22. plot_PCA_by_well(well_name, interpolate=False, frequency='2W', min_samples=48, 

         show_labels=True, save_dir=‘plot_PCA_by_well’) 
● Description:  

○ Gernates a PCA biplot (PCA score plot + loading plot) of the data given a 
well_name in the dataset. Only uses the 6 important analytes. 

● Parameters: 
○ well_name (string): name of the well to be processed 
○ interpolate (bool): choose whether or to interpolate the data 
○ frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html 

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
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for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ 
= every 2 weeks) 

○ min_samples (int): minimum number of samples the result should contain 
in order to execute. 

○ show_labels (bool): choose whether or not to show the name of the wells. 
○ save_dir (string): name of the directory you want to save the plot to 

 
23. plot_coordinates_to_map(gps_data, center=[33.271459, -81.675873], zoom=14) 

● Description:  
○ Plots the well locations on an interactive map given coordinates. 

● Parameters: 
○ gps_data (dataframe): Data frame with the following column names: 

station_id, latitude, longitude, color. If the color column is not passed, the 
default color will be blue. 

○ center (list with 2 floats): latitude and longitude coordinates to center the 
map view. 

○ zoom (int): value to determine the initial scale of the map 
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