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1. INTRODUCTION 

Heavy metals are natural constituents of the earth´s geological formations and their prolonged 
exposure is known to cause deleterious health effects in humans [1][2][3]. In theory, metal 
compounds are classified as toxic in nature, regardless of their density or atomic mass [4]. 
Moreover, much of the heavy metal contamination seen today in soils and surface waters across 
many rivers in the United States began in the late 18th century. With the rapid increase in 
technology, there has also been an increase in many activities such as fossil fuel burning, mining, 
agriculture, and landfill contamination, which are shown to affect the water quality [22][23][24].  
 
The use of fish, particularly zebrafish, has become important in areas of toxicology and drug 
discovery [5]. This vertebrate model can be used to reveal effects in embryonic development, 
chemical toxicity or molecular mechanisms using microarray and RNA-Seq technologies [6][7]. 
Hence, during the early 1980s, the field of toxicology first proposed to study the frequency of 
mutations in response to environmental carcinogens [8]. Ever since, zebrafish have been shown 
to effectively and rapidly uncover toxicological mechanisms for many contaminants and improve 
the understanding on the impact on vertebrates [9][10].  
 
Microarray technology is a novel tool in molecular biology which quantifies hundreds to 
thousands of gene transcripts from a given tissue or cell sample simultaneously [11]. A 
microarray has thousands of oligonucleotides or DNA fragments of a known sequence in a chip. 
After hybridization, the gene expression profiling can be used as an important source to discover 
molecular mechanisms and toxicity patterns post exposure in many species [12]. Meanwhile, 
zebrafish toxicological studies suggest that acute exposure to environmental heavy metals can 
suppress transcription factors on the DNA and block access into the DNA methylation 
machinery [13]. Meanwhile, toxic effects in site-specific patterns of methylation activation or 
repression result in gene-specific synthesis and influence a response to adaptation or defense 
mechanisms in response to stress [13]. Patterns of change in genes from acute exposure to Cd, 
Co and Cu suggests an effect on zebrafish in areas of  motor and neuromast development and 
blockage to cellular transport pathways, activating oxidative stress responses [14][15]. Since the 
central nervous system structures and organ functions are highly conserved regions, a wide range 
of toxic alterations are mostly universal between zebrafish and human species [16].  
 
Random Forest 
The prediction of environmental biomarkers using large amounts of data (microarray and RNA-
Seq studies) is of great need. To help circumvent this problem, an important technique used as a 
standard in data analysis is the Random Forest (RF) method. RF is a classification and regression 
algorithm that is based on the aggregation of trees after training the gene expression data, and it 
validates sets of variables using predictors for future observations [17]. In addition, RF has 
proven to be excellent in analyzing large numbers of variables and can function by predicting 
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measures using variables of importance. This method uses supervised machine-learning 
algorithms that process and analyze large numbers of predictor variables in high throughput data 
and is representative of an ensemble of learning methods [18].  
 
Several important characteristics have determined that RF is effective in determining genes and 
the role of each variable from response in prediction [19]. Also, RF predictive power shows that 
it is excellent at predicting variables which have noise and also different types of classes [19]. 
The model uses supervised random sampling strategies and addresses the predictive variability 
scores using variable of importance measures (VIMs). Also, the algorithm automatically 
computes and ranks variables according to their class and predictive ability [17].  
 
Motivation 
Currently, regulatory toxicology does not have effective methods that can provide testing 
capacity to measure change and biological alterations from heavy metal stress. Both state and 
federal regulatory guidelines use traditional dose-response thresholds which measure changes 
through trophic levels, and results are compared with analytical sediment benchmarks to create 
hazard quotients [20]. Moreover, as outlined by the Environmental Protection Agency (EPA), the 
compounds of highest concern for human health are As, Cd, Co, Cr, Cu, Hg, Ni, Pb and U [21]. 
Understanding the many mechanisms by which genes are modulated due to stress responses may 
have important implications for treatment and surveillance.  
 
In this report, a novel model is proposed for the identification of biomarkers used to evaluate risk 
factors involved in toxicity mechanisms associated with the exposure of heavy metals using 
bioinformatics and machine-learning. We hypothesize that gene biomarkers can be used to 
discriminate important pathways associated with (As, Cd, Hg) toxicity and their corresponding 
activity differences among exposures. The identified biomarkers may be used as unique 
fingerprints post-exposure to assess the long-term consequences, for example in a safety 
genomic evaluation.   

 
The models will be tested using: 

1. Candidate gene selection and classification.  
2. Principal Component Analysis (PCA). 
3. Random Forest (RF) Analysis. 
4. Ranking of genes using Variables of Importance Measures (VIMs). 
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2. EXECUTIVE SUMMARY 

This research work has been supported by the DOE-FIU Science & Technology Workforce 
Development Initiative, an innovative program developed by the U.S. Department of Energy’s 
Office of Environmental Management (DOE-EM) and Florida International University’s Applied 
Research Center (FIU-ARC). During the summer of 2020, a DOE Fellow intern Juan Carlos 
Morales, spent 10 weeks participating in a virtual summer internship with Pacific Northwest 
National Laboratory (PNNL) under the supervision and guidance of Dr. Katrina Waters, Director 
of the Biological Sciences division.   
 
The intern’s project was initiated on June 1, 2020 and continued through August 7, 2020. His 
deliberate objective was to identify heavy metal biomarkers and identify pathway-based 
mechanisms affected by exposure to heavy metals using model-based systems engineering.  
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3. MATERIALS AND METHODS 

This section describes the use of supervised Random Forest (RF) analysis for the identification 
of biomarkers as well as the use of pathway-based analysis as a measure of risk factor. The 
optimized model was used to classify heavy metal treatment, followed by biomarker gene 
selection for liver tissue. The study design was formulated as a machine-learning problem and 
the process is presented in the detailed procedures as shown in Figure 1. 
 
Experimental Setup 
All the programs used the operating system listed in Table 1 with Windows 10 Pro. The 
configuration of the code and description can be found in Table 2, and was developed in 
conjunction with Pacific Northwest National Laboratory.  
 

Table 1. Summary of CPU Descriptive Table Used to Run the Samples 
Name Description 
Lenovo ThinkPad X1  13-inch, Mid 2018 
Processor Intel ® Core ™ i7/-85500U CPU @ 1.80 GHz  
Memory 8GB 1600 MHz DDR3 
Graphics Intel HD Graphics 4000 1536MB 
Serial Number R90V36H8 
System Type 64-bit operating system x64- based processor 

 
All resources, supplementary material and developed code can be found in Appendix A, Table 4.  
 

Table 2. Demographic Summary of Zebrafish Heavy Metal Studies 

A. Liver (hepatocytes). 
Gene transcript IDs platforms - GPL2715. 
IDs. Study references. 
 
Workflow diagram 
The general workflow diagram of this study is displayed in Figure 1. We first processed five 
datasets in which the mRNA microarray expressions were selected accordingly. Then we applied 
the feature selection methods on the mRNA and mapped our candidate genes using 
bioinformatics. In the same process, we selected common genes across platforms and identified 
the prognostic biomarkers using Random Forest analysis. 

Compound Dataset n Conc. (ppm) 
Tissue 
type 

ID (s) 

Arsenic 3048 12 15.0 A [22] 
Arsenic 30062 12 15.0 A [23] 
Cadmium 41622 10 30.0 A [23],[24] 
Cadmium 41623 10 30.0 A [23],[24] 
Mercury 18861 12 200.0 A [25] 
Control Combined 60 - A [22],[36,][37],[25] 
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Figure 1. Flowchart of Random Forest Algorithm that Identifies Heavy Metal Biomarkers using Zebrafish 

Gene Expression Data. 
Data preprocessing   
First, we downloaded the zebrafish gene expression datasets using the Gene Expression Omnibus 
(NCBI GEO) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE30062, GSE3048, 
GSE41622, GSE41623, GSE18861, respectively [26]. Among the 5 datasets used, we chose 
Systems Biogenesis based on the GPL2715 platform. All the datasets were downloaded in the 
.txt format. Once we began our download, the preliminary analysis led to the classification and 
class toxicity profiles. A total of 56 combined heavy metal (As, Cd and Hg) treated samples were 
processed along with 60 controls and used for biomarker identification. Three different heavy 
metals including As, Cd, and Hg respectively, were analyzed. 
 
Bioinformatic Analysis 
For downstream bioinformatic analysis, the Bioinformatics Resource Manager (BRM) 
(https://cbb.pnnl.gov/brm/) was used where a workflow in which zebrafish identifiers were 
converted and merged. This can be found in a summarized form in Figure 2. We utilized a 
platform that has a familiar get started menu and provides access to most data imports and 
retrieval options. BRM is an environment for data management, mining, integration and 
functional annotation of high throughput biological data and managed by Pacific Northwest 
National Laboratory (PNNL) [27]. It also performs retrievals for batch annotations, cross 
reference of species and retrieval of micro RNA (miRNA) data necessary for system biology 
research [27]. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
https://cbb.pnnl.gov/brm/
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Mixed identifiers (Entrez Gene IDs) were introduced from human and zebrafish. Integrating 
BRM to identify the subset genes of regulated exposure zebrafish was important in reducing the 
amount of redundant gene identifiers mapped. Both BRM and DAVID software recognized 
mixed identifiers once the danio rerio (zebrafish) retrieval option was selected to obtain 
orthologue mapping for most of the data [28]. Each dataset was primarily formatted to a 
delimited file format before mapping the spreadsheets.  
 

 
Figure 2. Bioinformatics Resource Manager integrated, merged and identified common ENTREZ IDs from 
nucleotide GENBANK Accession Numbers. This technique formatted a total of 11 spreadsheets in which a 

total of 2,914 genes were mapped according to their assigned probe identifier. 
 
Fold Change 
In this section, the means to measure epigenetic regulation is described, which is to calculate the 
difference between samples or fold change. Fold change is a method that measures how much a 
quantity differs in fitting from the beginning to the end. As an example, an expression value at 
40 and a terminal value at 80 describes a fold change of 2, equivalently two more times. It can 
also be described as a proportion distinction between the final and the primary output over the 
fundamental value.  
 
The fold change process is often practiced in the interpretation of RNA-Seq and microarray gene 
expression data, in which the level of intensity or counts is estimated determining the variation in 
expression level. If the primary value such is A and the final value is B, the fold change variation 
can be computed as B/A-1, or equivalently, as (B-A)/A [29] 
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A primary downside to this approach is that the data may be biased and may cause avoidance of 
certain differentially expressed genes with large variations (B-A) but small ratios (A/B), which 
may elicit a miss rate of large concentration [29]. To circumvent our problem, we applied the 
log2 transformation to represent the fold change variation.  
 
Normalization of Datasets 
All the preprocessing, processing and statistical analysis were performed using R software. The 
transformation procedure taking the different gene expression data across all platforms and 
samples and grouping each sample together for screening, was calculated using a predefined 
data-formatting package. The (log2(expression ratios)) was calculated, respectively. The idea 
behind log2 transformations serves directly to fit overexpressed and under expressed values. As 
an example, if we assume there are 45 counts per read in the healthy control and 90 read counts 
in the treatment for gene A, this would mean a fold change of 2. However, if this exercise were 
reversed, the fold change expression value will be 0.5 representing under expression. Having 
different unit values for up-regulation and down-regulation allows for a uniform normalization 
procedure, treating regulation equally. This also allows for a continuous mapping space. Finally, 
the data corresponding to the healthy control zebrafish was grouped and averaged, respectively. 
Several packages and libraries were created and implemented.  
 
RStudio setup 
This step-in biomarker identification is crucial for model development. The feature selection 
method used in this report was developed in the R Software and programming language (version 
1.3.1056). The other platforms for gene matching and further analysis were implemented using 
Microsoft Excel 2010. Each package listed in Table 3, Table 4, Table 5 and Table 6 controls 
individual formatting and downstream analysis of GSE3048, GSE30062, GSE41622, GSE41623, 
and GSE18861, respectively.  
  

Table 3. Features and short descriptions of random forest implementations. 
R Software packages Description 
Library (Random Forest). Breiman and Cutler´s Random Forest for Classification and Regression 
Library (ggplot). Maps variables to aesthetics 
Library (pcaMethods). Principal Component Analysis validation and visualization of results 
Library (tidyverse). Designed for data formatting and structure 
Library (dplyr). Data manipulation package picking variables based on their (names) 
Library (impute). Imputation for microarray data 
Library (RColorBrewer). Heatmap visualization using color palettes for graphics 
 
After the subsets of expression data are down to an individual contaminant (As, Cd, and Hg), we 
make sure that each of the order of the samples in the data are the same as in the metadata. To 
make sure, we pulled the meta info along with metadata associated with the correct samples.  
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Table 4. Step by Step Downstream Analysis Using Rstudio  
Description Script to use: 
1. Install packages from. See Table 3 
2. Set your working directory to. setwd("C:/Users/jumor/Desktop/Pacific Northwest Nat. 

Laboratory/R/Random Forest/Lisa") 
3. Obtain sample ids from experiments studying 

As, Cd, and Hg. 
cd_meta = subset(meta, Experiment_HeavyMetal == 

"Cd") 
cd_ids = cd_meta$SampleID 

4. Select each subset in the data to As, Cd, Hg 
study. 

cd_data = data[,cd_ids] 

5. Set the row names in the dataset to gene names. rownames(cd_data) = data$Entrez.Gene.ID 
6. Confirm the order of the samples matches with 

the metadata and pull the meta info with 
associated samples. 

ord_vec = match(cd_meta$SampleID, names(cd_data)) 

7. Switch the order of the data columns to match 
the metadata. 

cd_data_ord = cd_data[,ord_vec] 

8. Transpose the data so the rows are samples and 
genes are columns. 

cd_t_data = t(as.matrix(cd_data_ord)) 

9. Remove any genes with NA values and only 
select the genes with non-.NA values. 

rmv_ids = which(apply(!is.na(cd_t_data), 2, sum)==0) 

 
Unsupervised Principal Component Analysis (PCA) Setup 
In this step, we used Principal Component Analysis to reduce the number of genes down to the 
transformed variables that are a weighed sum of gene abundances. During this process, the 
algorithm does not know anything about which samples belong to which groups, but it accounts 
for as much variability in the data as possible. 
 

Table 5. Principal Component Analysis (PCA) model input 
Description of the PCA process Script used: 

1. This PCA version allows for missing values. pca_res = pcaMethods::pca(cd_t_data_final, 
method = "ppca") 

2. Combine the sample information with the pca scores. pca_results = data.frame(cd_meta, PC1 = 
pca_res@scores[,1], PC2 = pca_res@scores[,2]) 

3. You can see that the control samples and treatment 
groups separate based on the new transformed variables. 

ggplot(data = pca_results, aes(x = PC1, y = PC2, 
color = Treatment)) + 

  geom_point(size = 3) + 
  theme_bw() 

4. Look at the percentage of variability in the data that is 
accounted for by the new transformed variables 

pca_res@R2*100 

5. Add this information to the plot (visualization). ggplot(data = pca_results, aes(x = PC1, y = PC2, 
color = Treatment)) + 

  geom_point(size = 3) + 
  theme_bw() + 

  xlab("PC1 (34.8%)") + 
  ylab("PC2 (15.9%)")  

6. Look at which genes are contributing to the new variables plot(1:ncol(cd_t_data_final), 
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the most looking at the "loadings". abs(pca_res@loadings[,1]), xlab = "Gene", ylab = 
"Absolute PC1 Loading Values") 

7. write out a csv of genes and their loadings. pca_loads = data.frame(Gene_ID = 
colnames(cd_t_data_final), PC1_Loading = 

pca_res@loadings[,1], Abs_PC1_Loading = 
abs(pca_res@loadings[,1]), PC2_Loading = 

pca_res@loadings[,2], Abs_PC2 = 
abs(pca_res@loadings[,2])) 

 
write.csv(pca_loads, file = "cd_pca_loadings.csv", 

row.names = F) 
 
Supervised Random Forest (RF) Setup 
The Random Forest analysis general functioning of the algorithm is depicted in Table 6. In the 
original RF method, each tree is used as a standard classification tree that uses so-called 
Decrease of Gini Impurity as a splitting criterion and selects each predictor randomly from 
selected subsets [17]. Since there are several variants in RF, we describe each step in the table 
below.  
 

Table 6. Random Forest model setup 
Description of the Random Forest process Script to use: 

1. Initiate Random Forest analysis with As, Cd, Hg 
versus control samples. 

rf_res = randomForest(x = t_cd_imputed, y = 
as.factor(cd_meta$Treatment)) 

2. Make predictions using a validation strategy that 
holds some of the samples out a time and then tries 
to predict their group. 

pred = data.frame(Predicted = rf_res$predicted, Truth 
= cd_meta$Treatment) 

3. Calculate the accuracy of the RF model. pred$Predicted == pred$Truth 
4. Count the number of times this is true sum(pred$Predicted == pred$Truth 
5. Divide by the number of samples to get accuracy. sum(pred$Predicted == pred$Truth)/nrow(pred) 
6. Determine which genes are most important in our 

prediction by looking at the variable of importance 
metric. 

var_imp = rf_res$importance 

7. Pull the genes that are important based by filter all 
genes with an importance level of 0. 

imp_res = data.frame(Gene = 
row.names(var_imp)[which(var_imp != 0)], Importance 

= var_imp[which(var_imp != 0)]) 
8. Plot the variables of importance, select top 30 #1. varImpPlot(rf_res, n.var = 30, main = 'Cd Subset 

Results') 
9. Rank each gene based on importance, make the list 

so rank 1 is the highest level in importance. 
imp_res$Rank = nrow(imp_res) - 

rank(imp_res$Importance, ties.method = "random") 
10. Plot variables of importance #2 [after ranking]. lot(x = imp_res$Rank, y = imp_res$Importance, 

cex.main=1.5, xlab='Gene rank',ylab='Variable 
importance',cex.lab=1.5, pch=16,main='Cd 

subset_results') 
11. Write out/ discard importance results with level of 

importance as 0. 
full_imp_res = data.frame(Gene = row.names(var_imp), 

Importance = var_imp) 
names(full_imp_res) = c("Gene", "Importance") 

full_imp_res$Rank = nrow(full_imp_res) - 
rank(full_imp_res$Importance, ties.method = 

"random") 
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12. Determine top 25 genes (ranked). top25_data = t_cd_imputed[,gn.imp] 
13. Install heatmap packages and group data to 

visualize the top 25 most important genes. 
install.packages("RColorBrewer") 

library(RColorBrewer) my_group <- 
as.numeric(as.factor(cd_meta$Treatment)) 

colSide <- brewer.pal(2, "Set1")[my_group] 
14. Visualize results in a heatmap. heatmap(t(top25_data), Colv = NA, scale = "row", 

ColSideColors = colSide) 
 
Candidate biomarker genes analysis via Gene Ontology and KEGG Pathway Analysis 
In this report, we compared different datasets, determined spatial variability among heavy metals 
and identified the candidate biomarker genes for As, Cd, and Hg using Random Forest analysis. 
First, the genes will be evaluated using the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) to comprehensively study our selected genes giving biological meaning 
behind our large list of genes. Nevertheless, Gene Ontology (GO) will allow us to develop a 
comprehensive computational model of biological systems. These will range from the 
organismal to the molecular level, across many model species. Mapping the information on the 
function of genes is particularly useful for any large-scale molecular biology and genetics 
experiments in biomedical research. In addition, by further identifying many processes, 
researchers can generate their hypothesis of interest.  
 
Secondly, we applied the gene clustering and ontology assignments into functional groups and 
performed the GO enrichment analysis to determine whether the heavy metal genes determined 
were significant. The p-value <0.05 should be considered statistically significant when defining 
the GO term enrichment analysis.  
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4. RESULTS AND ANALYSIS 

Unsupervised Principal Component Analysis.  
Zebrafish gene expression datasets were grouped and evaluated among control and treatment 
[As, Cd, and Hg] conditions. Our preliminary analysis revealed in Figure 3, illustrates the 
transformed variables in the grouped datasets accounted for. This analysis was helpful with 
respect to visually understanding the variability in the data. More, the algorithm reduced the 
number of genes to their transformed values using the weight sum of gene abundances. About 38 
percent of the variance was passed onto Principal Component 1 (PC1) and about 15.9 percent of 
the variance was passed onto PC2. Overall, we see that the first component was effective in 
separating the data from control versus the treatment types. This analysis was successful in 
clustering similar samples based on their condition type. In general, the algorithm was successful 
at creating new components and in turn, a simpler description of the system was visualized. 
 

 
Figure 3. Results from Grouped unsupervised 

Principal Component Analysis (PCA). The 
Percentage of Variability Among arsenic, cadmium 
and mercury was determined to be 34.8% in PC1 
and 15.9 % in PC2. This Process allowed for the 

Reduction in Genes to Their Transformed Values 
Using the Weight Sum of Gene Abundances.  

 

 
Figure 4. Contributing Genes from PC1 using 

Absolute Values for New Variable Identification. 
Dataset GSE3048, GSE30062, GSE41622, GSE41623 

and GSE18861 were used in this analysis. Gene 
Loadings with A Cut-Off Criterion of < 0.05 were 

selected for RF biomarker identification. 
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Random Forest Analysis  
We used the RF algorithm for [56 observations - 1411 predictors] and supported GSE41622 / 
GSE41623 [NA] data using the k-nearest neighbor (K-NN) classification algorithm. We trained 
the data and classified the results for As, Cd, and Hg using ordinance classification responses 
based on the variable class and observations [17]. Table 7 shows the classification results run 
times during training and accuracy performance. The genes were ranked according to variables 
of importance and further visualized selecting the top 25 most important genes using the Mean 
decrease in Gini [17]. The RF algorithm made predictions using a validation strategy that holds 
some of the samples out at a time and tries to predict their group.  
 
Figure 5, Figure 7 and Figure 9 show the classification of genes selected during the RF 
classification process. The top 25 most important genes for As, Cd and Hg, identified using the 
RF algorithm, can be seen in Figure 6, Figure 8, and Figure 10, respectively. With respect to 
model accuracy and performance, the arsenic dataset was ranked highest in performance with a 
96% accuracy. Mercury was second, reaching a successful training with 95% accuracy. Finally, 
the lowest accuracy among all was cadmium, reaching a 31% success model performance 
accuracy.  

Table 7. Random Forest Model Training and Accuracy 
Random Forest 
dataset training 

Accuracy (%)  Truth Statements Time (s) 

As 96%  54 0.48 

Cd 31%  10 3.88 

Hg 95%  53 0.55 
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Figure 5. Cadmium gene subset list ranked according 
to variable of importance. The higher the ranking of 
importance the more predictive power each gene is 

considered.  

 
Figure 6. Cadmium subset gene list including the 

most important genes ranked according to the Mean 
Decrease Gini ordinance.  

 

 
Table 8. Top 25 cadmium biomarkers identified using Random Forest (RF) analysis 

Entrez ID Gene Symbol Gene name 
30387 PSMB5 Proteasome (prosome, macropain) subunit, beta type, 5 
30475 ERH Enhancer of rudimentary homolog (Drosophila) 
30643 Acat2 Acetyl-coa acetyltransferase 2 
30664 GSK3A Glycogen synthase kinase 3 alpha 
30712 snap25a Synaptosome-associated protein 25a 
58068 Pc Pyruvate carboxylase 
58108 FTH1 Ferritin, heavy polypeptide 1 
64271 epha4a Eph receptor a4a 
64275 supt5h Suppressor of Ty 5 homolog (S. Cerevisiae) 
64278 psmb7 Proteasome (prosome, macropain) subunit, beta type, 7 
65227 Rgl2 Ral guanine nucleotide dissociation stimulator-like 2 
65228 aspn Asporin (LRR class 1) 
83906 myl9l Myosin, light polypeptide 9, like; bing3 like gene 
140819 ptprf Protein tyrosine phosphatase, receptor type, F 
260350 HAS2 Hyaluronan synthase 2; similar to hyaluronan synthase 2 
324469 wu:fc30c06 Wu:fc30c06 
335202 wu:fk88f07 Wu:fk88f07 
335228 wu:fk92d04 Wu:fk92d04 
352919 selt1a Selenoprotein T, 1a 
368722 pdzk1ip1l PDZK1 interacting protein 1, like 
378480 pdgfaa Platelet-derived growth factor alpha a 
407633 si:ch211-191d7.6 Bat2-like protein 
492342 mllt10 Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 
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Drosophila); translocated to, 10 

558609 si:dkey-73n10.1 Si:dkey-73n10.1 
 

 
Figure 7. Mercury subset gene list ranked according 
to variable of importance. The higher the importance 

the more predictive power each gene contains.  

 
Figure 8. Mercury subset gene list including the most 

important genes ranked according to the mean 
Decrease Gini ordinance.  

 
Table 9. Top 25 mercury biomarkers identified using Random Forest (RF) analysis 

Entrez ID Gene Symbol Gene Name 
30084 nme2b.2 Nucleoside diphosphate kinase-Z2 
30307 jak2a Janus kinase 2a 
30364 fzd8c Frizzled homolog 8c 
30489 bfb Complement component bfb 
30558 PAX9 Paired box gene 9 
30614 fxr Farnesoid X-activated receptor 
64609 atp1a2a Atpase, Na+/K+ transporting, alpha 2a polypeptide 
114405 cx27.5 Connexin 27.5 
142986 ptk2.1 Protein tyrosine kinase 2.1 
192124 Glra3 Glycine receptor, alpha 3 
259196 MALT1 Mucosa associated lymphoid tissue lymphoma translocation gene 1 
322109 wu Wu:fb50c11 
325631 usp24 Ubiquitin specific peptidase 24 
373108 XIAP X-linked inhibitor of apoptosis 
378477 ANKRD6 Ankyrin repeat domain 6 
406768 zgc Zgc:55262 
541378 Tufm Zgc:110766 
555643 hnrnpm Heterogeneous nuclear ribonucleoprotein M 
559432 si Si:dkeyp-11g8.2 
564112 MAGI2 Membrane associated guanylate kinase, WW and PDZ domain containing 2 
678623 SLC11A2 Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 

2 
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793011 rxrab Retinoid x receptor, alpha b 
100535764 - - 

 

 
Figure 9. Arsenic subset gene list ranked according to 

variable of importance. The higher the gene is to 1 
the more predictive power each gene contains. 

 
Figure 10. Arsenic subset gene list including the most 

important genes ranked according to the Mean 
Decrease Gini ordinance.  

 
Table 10. Top 25 arsenic biomarkers identified using Random Forest (RF) analysis 

Entrez ID  Gene Symbol Gene Name 
30477 TCP1 T-complex polypeptide 1 
30553 SOD1 Superoxide dismutase 1, soluble 
30617 Urod Uroporphyrinogen decarboxylase 
58041 HSPE1 Heat shock 10 protein 1 (chaperonin 10) 
58068 Pc Pyruvate carboxylase 
58081 baxa Bcl2-associated X protein, a 
64278 psmb7 Proteasome (prosome, macropain) subunit, beta type, 7 
64605 htatip2 HIV-1 Tat interactive protein 2 
65233 six4.2 Sine oculis homeobox homolog 4.2 
80929 id Id:ibd2048 
116991 UGDH UDP-glucose dehydrogenase 
322002 wu Wu:fb40f06 
323550 wu Wu:fc02e03 
325171 wu Wu:fc57d08 
325484 si Si:dkeyp-86b9.2 
325543 wu Wu:fc85f10 
335108 wu Wu:fk69e07 
336025 wu Wu:fj43f12 
337295 wu Wu:fk14c11 
552887 wu Wu:fb63c04 
558648 si Si:ch211-15i6.2 
560210 hsp70l Heat shock cognate 70-kd protein, like; MCM5 minichromosome 

maintenance deficient 5 (S. Cerevisiae); heat shock cognate 70-kd protein; 
zgc:174006; similar to heat shock protein 8 
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562304 zgc Similar to cytochrome P450, family 2, subfamily J, polypeptide 2; 
cytochrome P450 monooxygenase; similar to LOC562304 protein 

563420 si Si:ch211-245h14.1 
 
Table 11. Arsenic results of Biological Functions (BF) gene set enrichment analysis performed on the top 25 
ranked genes achieved through the Random Forest learning methods. Significant GO TERM enrichment 
processes p < 0.05. 
Pathway ID Biological Process (BP) Enriched Pathway Count in 

gene set 
p-value FDR 

GO:0010038~ Response to metal ion 4 1.03E-05 0.0107 
GO:0010035~ Response to inorganic substance 4 2.42E-05 0.0253 
GO:0046686~ Response to cadmium ion 3 1.28E-04 0.1338 

GO:0051597~ Response to methylmercury 2 0.0145 14.2414 

GO:0009410~ Response to xenobiotic stimulus 2 0.0203 19.3575 

GO:0010033~ Response to organic substance 2 0.0681 52.2562 
 
Table 12. Arsenic results of a pathway-based gene set analysis performed on the top 25 ranked genes achieved 

through the Random Forest learning methods. 
Entrez ID Gene Symbol KEGG PATHWAY 
116991 UGDH dre00040: Pentose and glucuronate interconversions 

dre00053: Ascorbate and aldarate metabolism, 
dre00500: Starch and sucrose metabolism 
dre00520: Amino sugar and nucleotide sugar metabolism, 

58081 baxa dre04115: p53 signaling pathway 
dre04210: Apoptosis, 

560210 hsp70l dre03030: DNA replication, 
dre03040: Spliceosome, 
dre04010: MAPK signaling pathway, 
dre04110: Cell cycle, 
dre04144: Endocytosis, 

64278 psmb7 dre03050: Proteasome, 
58068 Si:ch211-15i6.2 dre00020: Citrate cycle (TCA cycle), 

dre00620: Pyruvate metabolism, 
325484 Si:dkeyp-86b9.2 dre04130: SNARE interactions in vesicular transport, 
30617 Urod dre00860: Porphyrin and chlorophyll metabolism, 
 
Table 13. Cadmium results of Biological Functions (BF) gene set enrichment analysis performed on the top 25 

ranked genes achieved through the Random Forest learning methods. Significant GO TERM enrichment 
processes p < 0.05. 

Pathway ID Biological Process (BP) Enriched Pathway Count in 
gene set 

p-value FDR 

GO:0009987~ Cellular process 13 0.0242 26.7502 
GO:0001947~ Heart looping 2 0.0521 49.2405 
GO:0016051~ Carbohydrate biosynthetic process 2 0.0616 55.3135 

GO:0003007~ Heart morphogenesis 2 0.0895 69.5271 
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GO:0035239~ Tube morphogenesis 2 0.0971 72.6053 
 

Table 14. Cadmium results of a pathway-based gene set analysis performed on the top 25 ranked genes 
achieved through the Random Forest learning methods. 

Entrez ID Gene Symbol KEGG PATHWAY 
30643 Acat2 dre00071: Fatty acid metabolism, 

dre00072: Synthesis and degradation of ketone bodies, 
dre00280: Valine, leucine and isoleucine degradation, 
dre00310: Lysine degradation, 
dre00380: Tryptophan metabolism, 
dre00620: Pyruvate metabolism, 
dre00640: Propanoate metabolism, 
dre00650: Butanoate metabolism, 
dre00900: Terpenoid backbone biosynthesis, 

58108 FTH1 dre00860: Porphyrin and chlorophyll metabolism, 
83906 myl9l dre04270: Vascular smooth muscle contraction, 

dre04510: Focal adhesion, 
dre04530: Tight junction, 
dre04810: Regulation of actin cytoskeleton, 

378480 pdgfaa dre04010: MAPK signaling pathway, 
dre04510: Focal adhesion, 
dre04540: Gap junction, 
dre04810: Regulation of actin cytoskeleton, 

30387 PSMB5 dre03050: Proteasome, 
64278 psmb7 dre03050: Proteasome, 
58068 Pc dre00020: Citrate cycle (TCA cycle), 

dre00620: Pyruvate metabolism, 
30712 snap25a dre04130: SNARE interactions in vesicular transport, 
 
Table 15. Mercury results of Biological Functions (BF) gene set enrichment analysis performed on the top 25 

ranked genes achieved through the Random Forest learning methods. Significant GO TERM enrichment 
processes p < 0.05. 

Pathway ID Biological Process (BP) Enriched Pathway Count in 
gene set 

p-value FDR 

GO:0010740~ Positive regulation of protein kinase cascade 2 0.0137 15.4435 
GO:0045944~ Positive regulation of transcription from RNA 

polymerase II promoter 
2 0.0206 22.2516 

GO:0010627~ Regulation of protein kinase cascade 2 0.0240 25.4486 

GO:0009967~ Positive regulation of signal transduction 2 0.0507 46.7403 

GO:0010647~ Positive regulation of cell communication 2 0.0507 46.7403 

GO:0035162~ Embryonic hemopoiesis 2 0.0524 47.8493 

GO:0045893~ Positive regulation of transcription, DNA-
dependent 

2 0.0557 49.9990 

GO:0051254~ Positive regulation of RNA metabolic process 2 0.0573 51.0407 

GO:0006357~ Regulation of transcription from RNA 
polymerase II promoter 

2 0.0704 58.6333 
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GO:0010628~ Positive regulation of gene expression 2 0.0960 70.4849 

GO:0045941~ Positive regulation of transcription 2 0.0960 70.4849 

GO:0010740~ Positive regulation of protein kinase cascade 2 0.0137 15.4435 

GO:0045944~ Positive regulation of transcription from RNA 
polymerase II promoter 

2 0.0206 22.2516 

GO:0010627~ Regulation of protein kinase cascade 2 0.0240 25.4486 

GO:0009967~ Positive regulation of signal transduction 2 0.0507 46.7403 
 

Table 16. Mercury results of a pathway-based gene set analysis performed on the top 25 ranked genes 
achieved through the Random Forest learning methods. 

 
Entrez ID Gene Symbol KEGG PATHWAY 
64609 atp1a2a dre04260: Cardiac muscle contraction, 
30307 jak2a dre04630: Jak-STAT signaling pathway, 

dre04920: Adipocytokine signaling pathway, 
373108 XIAP dre04120: Ubiquitin mediated proteolysis, 

dre04210: Apoptosis, 
dre04510: Focal adhesion, 
dre04621: NOD-like receptor signaling pathway, 

192124 Glra3 dre04080: Neuroactive ligand-receptor interaction, 
555643 hnrnpm dre03040: Spliceosome, 
564112 MAGI2 dre04530: Tight junction, 
30084 nme2b.2 dre00230: Purine metabolism, 

dre00240: Pyrimidine metabolism, 
142986 ptk2.1 dre04012: ErbB signaling pathway, 

dre04370: VEGF signaling pathway, 
dre04510: Focal adhesion, 
dre04810: Regulation of actin cytoskeleton, 

678623 SLC11A2 dre04142:Lysosome, 
406768 zgc dre04210: Apoptosis, 
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5. CONCLUSION 

In the present study, control and treated zebrafish samples were analyzed with respect to 
identifying discriminating markers associated with heavy metal exposure conditions. The 
response results from our experiment demonstrated that the liver proves to be a  sensitive 
organ/indicator of metal toxicity in adult zebrafish. Finally, we proved that Random Forest (RF) 
analysis was effective in discriminating heavy metal biomarkers.  
 
First, the algorithms for  unsupervised Principal Component Analysis (PCA) reduced the number 
of genes to their transformed values using the weight sum of gene abundances. For the grouped 
analysis, about 38 percent of the variance was passed onto Principal Component 1 (PC1) and 
about 15.9 percent of the variance was passed onto PC2. We also see that the first component 
was effective in separating the data from control versus the treatment types. PCA effectively 
clustered similar samples based on their sample treatment types.  
 
The use of supervised a Random Forest classification algorithm classified the grouped series of 
56 observations - 1411 predictors, and supported GSE41622 / GSE41623 [NA] data using the k-
nearest neighbor (K-NN) classification algorithm. We evaluated the model performance while 
during training data. We confirmed that GSE41622 and GSE41623 did not achieve optimal 
accuracy in model performance; however GSE3048, 30062 and GSE18861 achieved 95 and 96 
percentile model performances, respectively.  
 
We used the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
software for a more systematic functional interpretation for arsenic, cadmium, and mercury 
biomarkers. Importantly we chose DAVID because it considers the functional gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways pipeline. The 
functional annotation and enrichment analysis performed with DAVID are described in Tables 
10-16. In order to investigate the enriched biological functions and KEGG pathways between 
arsenic, cadmium and mercury, DAVID analysis was performed separately using the biomarkers 
identified in Table 8-Table 10.  
 
First, we grouped the arsenic subset of genes and computed the GO term enrichment analysis. 
We identified that among the topmost Biological Processes (BP), response to inorganic 
substance (GO: 0010035) or chemicals and responses to metal ions (GO: 0010038) were 
significantly enriched processes. Using the same subset of genes, KEGG Pathway terms 
enrichment was assessed, however no enrichment could be found at p-value <0.05.  The top-25 
upmost ranked genes at an FDR<10-8 are presented in Table 12.  
 
The cadmium subset of genes reflected few enriched processes. Noteworthy, the significant 
process in the cadmium markers was cellular processes (GO: 009987). Many genes participated 
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in the enrichment process of cadmium. It was estimated that the Pyruvate metabolism (6.5E-2) 
and Proteasome signaling (9.0E-2) pathways were enriched. 
 
 Lastly, mercury-enriched processes were identified in positive regulation of protein kinase 
cascade (GO:0010740), positive regulation of transcription from RNA polymerase II promoter 
(GO: 0045944), and regulation of protein kinase cascades (GO: 0010627). Like arsenic, 
enrichment analysis using the top 25 ranked genes was assessed, however no enrichment could 
be found at p-value <0.05. The top-25 upmost ranked genes at an FDR<10-8 are presented in 
Table 16.  
 
In conclusion, Random Forest analysis determined the biomarkers for arsenic, cadmium and 
mercury and associated novel pathways derived from the gene expression data. In addition, our 
results show that the zebrafish transcriptome responds to treatment in a sensitive manner. The 
identification of heavy metal biomarkers in response to As, Cd, and Hg proves to be a fruitful 
molecular approach to strengthen traditional environmental measurements, detailing a 
comprehensive pathway framework to monitor accumulated metals in surface waters.   
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APPENDIX A. 

Table 17. Heavy metal dataset demographics according to time, GSE Accession, group and dose. 
SampleID GSE Accession TimePoint Group Treatment Concentration 
GSM67011 GSE3048 24 Treated As 15 µg/L 
GSM67012 GSE3048 24 Treated As 15 µg/L 
GSM67013 GSE3048 24 Treated As 15 µg/L 
GSM67014 GSE3048 48 Treated As 15 µg/L 
GSM67015 GSE3048 48 Treated As 15 µg/L 
GSM67016 GSE3048 48 Treated As 15 µg/L 
GSM67017 GSE3048 8 Treated As 15 µg/L 
GSM67018 GSE3048 8 Treated As 15 µg/L 
GSM67019 GSE3048 8 Treated As 15 µg/L 
GSM67020 GSE3048 96 Treated As 15 µg/L 
GSM67021 GSE3048 96 Treated As 15 µg/L 
GSM67022 GSE3048 96 Treated As 15 µg/L 
GSM67023 GSE3048 24 Control Control 

 GSM67024 GSE3048 24 Control Control 
 GSM67025 GSE3048 24 Control Control 
 GSM67026 GSE3048 48 Control Control 
 GSM67027 GSE3048 48 Control Control 
 GSM67028 GSE3048 48 Control Control 
 GSM67029 GSE3048 8 Control Control 
 GSM67030 GSE3048 8 Control Control 
 GSM67031 GSE3048 8 Control Control 
 GSM67032 GSE3048 96 Control Control 
 GSM67033 GSE3048 96 Control Control 
 GSM67034 GSE3048 96 Control Control 
 GSM744231 GSE30062 8 Treated As 15 µg/L 

GSM744232 GSE30062 8 Treated As 15 µg/L 
GSM744233 GSE30062 8 Treated As 15 µg/L 
GSM744234 GSE30062 24 Treated As 15 µg/L 
GSM744235 GSE30062 24 Treated As 15 µg/L 
GSM744236 GSE30062 24 Treated As 15 µg/L 
GSM744237 GSE30062 48 Treated As 15 µg/L 
GSM744238 GSE30062 48 Treated As 15 µg/L 
GSM744239 GSE30062 48 Treated As 15 µg/L 
GSM744240 GSE30062 96 Treated As 15 µg/L 
GSM744241 GSE30062 96 Treated As 15 µg/L 
GSM744242 GSE30062 96 Treated As 15 µg/L 
GSM744105 GSE30062; GSE41622 8 Control Control 

 GSM744106 GSE30062; GSE41622 8 Control Control 
 GSM744107 GSE30062; GSE41622 8 Control Control 
 GSM744108 GSE30062; GSE41622 24 Control Control 
 GSM744109 GSE30062; GSE41622 24 Control Control 
 GSM744110 GSE30062; GSE41622 24 Control Control 
 GSM744111 GSE30062; GSE41622 48 Control Control 
 GSM744112 GSE30062; GSE41622 48 Control Control 
 GSM744113 GSE30062; GSE41622 48 Control Control 
 GSM744114 GSE30062; GSE41622 96 Control Control 
 GSM744115 GSE30062; GSE41622 96 Control Control 
 GSM744116 GSE30062; GSE41622 96 Control Control 
 GSM1020289 GSE41622 8 Treated Cd 30 µg/L 

GSM1020290 GSE41622 8 Treated Cd 30 µg/L 
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GSM1020291 GSE41622 24 Treated Cd 30 µg/L 
GSM1020292 GSE41622 24 Treated Cd 30 µg/L 
GSM1020293 GSE41622 48 Treated Cd 30 µg/L 
GSM1020294 GSE41622 48 Treated Cd 30 µg/L 
GSM1020295 GSE41622 48 Treated Cd 30 µg/L 
GSM1020296 GSE41622 96 Treated Cd 30 µg/L 
GSM1020297 GSE41622 96 Treated Cd 30 µg/L 
GSM1020298 GSE41622 96 Treated Cd 30 µg/L 
GSM1020299 GSE41623 8 Treated Cd 30 µg/L 
GSM1020300 GSE41623 8 Treated Cd 30 µg/L 
GSM1020301 GSE41623 24 Treated Cd 30 µg/L 
GSM1020302 GSE41623 24 Treated Cd 30 µg/L 
GSM1020303 GSE41623 48 Treated Cd 30 µg/L 
GSM1020304 GSE41623 48 Treated Cd 30 µg/L 
GSM1020305 GSE41623 48 Treated Cd 30 µg/L 
GSM1020306 GSE41623 96 Treated Cd 30 µg/L 
GSM1020307 GSE41623 96 Treated Cd 30 µg/L 
GSM1020308 GSE41623 96 Treated Cd 30 µg/L 
GSM744057 GSE41623 8 Control Control 

 GSM744058 GSE41623 8 Control Control 
 GSM744059 GSE41623 8 Control Control 
 GSM744060 GSE41623 24 Control Control 
 GSM744061 GSE41623 24 Control Control 
 GSM744062 GSE41623 24 Control Control 
 GSM744063 GSE41623 48 Control Control 
 GSM744064 GSE41623 48 Control Control 
 GSM744065 GSE41623 48 Control Control 
 GSM744066 GSE41623 96 Control Control 
 GSM744067 GSE41623 96 Control Control 
 GSM744068 GSE41623 96 Control Control 
 GSM467510 GSE18861 8 Treated Hg 200 µg/L 

GSM467511 GSE18861 8 Treated Hg 200 µg/L 
GSM467512 GSE18861 8 Treated Hg 200 µg/L 
GSM467513 GSE18861 24 Treated Hg 200 µg/L 
GSM467514 GSE18861 24 Treated Hg 200 µg/L 
GSM467515 GSE18861 24 Treated Hg 200 µg/L 
GSM467516 GSE18861 48 Treated Hg 200 µg/L 
GSM467517 GSE18861 48 Treated Hg 200 µg/L 
GSM467518 GSE18861 48 Treated Hg 200 µg/L 
GSM467519 GSE18861 96 Treated Hg 200 µg/L 
GSM467520 GSE18861 96 Treated Hg 200 µg/L 
GSM467521 GSE18861 96 Treated Hg 200 µg/L 
GSM467498 GSE18861 8 Control Control 

 GSM467499 GSE18861 8 Control Control 
 GSM467500 GSE18861 8 Control Control 
 GSM467501 GSE18861 24 Control Control 

 GSM467502 GSE18861 24 Control Control 
 GSM467503 GSE18861 24 Control Control 
 GSM467504 GSE18861 48 Control Control 
 GSM467505 GSE18861 48 Control Control 
 GSM467506 GSE18861 48 Control Control 
 GSM467507 GSE18861 96 Control Control 
 GSM467508 GSE18861 96 Control Control 
 GSM467509 GSE18861 96 Control Control 
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