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ABSTRACT 

This technical report provides an overview of the remote summer internship completed by Roger 
Boza with Idaho National Laboratory (INL) under the direct mentorship of Dr. Ahmad Al. 
Rashdan. Over the 10-week summer internship, Mr. Roger assisted on two distinct projects and 
worked in one. All of those projects aimed at facilitating and automating nuclear power plants 
operations. The three projects incorporated machine learning (ML) and deep learning (DL) state-
of-the-art  algorithms/architectures to perform computer vision (CV) tasks. The projects focused 
on specific CV tasks for automating manual staff operations that normally require considerable 
time and effort. The project Mr. Roger worked on, explainability of ml models for fire watch, 
aimed to analyze and explain the reasons why previously trained convolutional neural network 
(CNN) models made the types of predictions they did. A literature review was conducted to 
determine which approach was best suited for the analysis. The selected method, gradient class 
activation mapping (Grad-CAM), generated visual heatmaps that highlighted the importance of 
certain features in the images with respect to the predictions made by the CNNs. The first project 
that Mr. Roger assisted on, Automated Gauge Reading, aimed to automate the reading and 
monitoring of analog gauge instruments across nuclear power plants. In this project, CNNs and 
CV were used to help in the process on reading gauge values. The second project that Mr. Roger 
assisted on, Obstacle Detection for Drones, focused on improving a technology known as Route 
Operable Unmanned Navigation of Drones (ROUNDS), which was initially developed by INL. 
The main objective off the project was to use ML to detect obstacles in drone flight paths. All three 
projects saw the successful completion of their respective objectives. This report will discuss the 
explainability of ML models for fire watch as the main task for the internship. 
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1. EXECUTIVE SUMMARY  

This research work has been supported by the DOE-FIU Science & Technology Workforce 
Initiative, an innovative program developed by the US Department of Energy’s Environmental 
Management (DOE-EM) and Florida International University’s Applied Research Center (FIU-
ARC). During the summer of 2021, a DOE Fellow intern, Roger Boza spent 10 weeks doing a 
virtual summer internship with Idaho National Laboratory (INL) under the supervision and 
guidance of Dr. Ahmad Al. Rashdan (Senior Research and Development Scientist).  The intern’s 
project was initiated on June 1, 2021, and continued through August 5, 2021 with the objective of 
implementing machine learning (ML) and deep learning (DL) algorithms to facilitate and automate 
nuclear power plant operations. 
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2. AUTOMATED FIRE WATCH 

2.1. Introduction 
The U.S. Nuclear Regulatory Commission defines fire watch as “individuals responsible for 
providing additional (e.g., during hot work) or compensatory (e.g., for system impairments) 
coverage of plant activities or areas for the purposes of detecting fires or for identifying activities 
and conditions that present a potential fire hazard.”[7]  Throughout the nuclear power industry, the 
required level of fire watch varies, depending on the plant conditions. At plants that require 
frequent fire watch activities (Figure 1), the cost of fire watch is substantial (i.e., can exceed $1M 
per month per plant). Due to recent sensing technology advancements, as well as the growing use 
of high-resolution cameras, great potential exists for automating fire detection in real-time via 
remote monitoring. This would not only lower costs, but also reduce human errors and improve 
safety.  
 

 
Figure 1. During fire watch,  someone must usually be present near the location of the potential hazardous 
fire, for as long as the hazardous condition exists. Replacing the person with a camera requires introducing 

forms of machine intelligence to recognize fire in a video stream and generate an alarm.[8] 
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2.2. Objectives 
Investigate the explainability of previously trained mathematical models that can analyze every 
frame in a live video stream of an industrial environment and determine whether there is fire. The 
trained models were given the following requirements: 

1) Detect as many fires as possible. 
a. Minimize false positives (i.e., detecting fire when there is no fire). 
b. Minimize false negatives (i.e., not detecting fire when there is fire). 

2) Make predictions in real-time (20 ms or less). 
 
2.3. Neural Network Models 
Convolutional neural network (CNN) are the mathematical model templates most commonly used 
to classify images in machine learning (ML). They are good at extracting features from images 
(e.g., colors and shapes [in regard to fires]). These models analyze imagery data with the help of 
kernels (filters) and provide translation equivariant responses known as feature maps. Typically, 
CNNs have a fixed size architecture (Figure 2), but can be constructed in a manner that increases 
their width, depth, and resolution[1]. 
 

 
Figure 2. CNNs can have different structures that vary in terms of width and height.Model (a) is the most 
common type of CNN. Model (b) increases the width of the network to extract more features. Model (c) 

increases the depth of the network to extract abstract features (features of features). Model (d) increases the 
image resolution to get more details. Model (e) combines of all the various scaling approaches (i.e., [a]-[d]) 

and thus provides the most robust method.[1] 
 
2.4. Model Training 
Training successful CNNs usually requires large amounts of data (i.e., typically on the order of 
thousands), with diverse examples. This is because the model must learn which extracted features 
are important and be able to generalize them in order to make accurate predictions. A model that 
generalizes rather than memorizes (i.e., overfits) is said to be robust and is thus desired for 
industrial applications.   
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To train the models, over 12,000 images containing fire (6,000) and no fire (6,000) were previously 
collected from the Yahoo Flickr Creative Commons 100 Million (YFCC100m)[2] and Google’s 
YouTube. This dataset was randomly split into data used to fit (train and tune) the models (Figure 
3) and data used to test the resulting performance. The split partition was 80% for training and 
20% for testing. Within the 80% that is used to train the model 10% was randomly selected for 
internal testing as the model continues to develop (validation). Many variations of CNN’s were 
selected and trained on the same datasets. 
 

 
Figure 3. Model accuracy (left) and loss (right) metrics for training and validation datasets.The x-axis shows 

the number of epochs that are the training trials. As the model learns (i.e., the accuracy increases), the 
number of epochs increases. The loss metric helps the model determine when it’s approaching an ideal state, 

thereby avoiding overfitting the model to the data. 
 
2.5. Model Prediction Explainability 
One challenge with image-based classification is knowing which areas of the image the decision 
was based on. Typically, the intermediate layers of a CNN, as shown in Figure 4, are considered a 
“black box” because they do not provide an explanation for the predicted output. A literature 
review of artificial neural network explainability showed that a variety of methods can be used to 
help explain the reasoning during the classification process. 

 
Figure 4. Example CNN layout, with input layer, intermediate layers, and output layer.The middle section, 

commonly referred to as a black box, contains most of the neural connections and weights for the model. It is 
very difficult to explain how and why this section’s output led to the final decision. 
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2.6. Types of Explainability Methods 
Sensitivity analysis [3] is based on the model’s locally evaluated gradient, or some other local 
measure of variation. The most relevant features are those to which the output is most sensitive. 
However, sensitivity analysis, does not furnish an explanation of the function. It only produces a 
variation of it, and therefore unsuited to research. 
 
Deep Taylor decomposition (DTD) [4] explains the model’s decision by decomposing the function 
value f(x) as a sum of relevance score. DTD explains the nonlinear classification decisions made 
by the trained models in terms of the input variables. This method, based on the Taylor expansions, 
decomposes the output of deep neural networks. DTD can be applied to fully trained existing 
ANNs. 
 
Layer-wise relevance propagation (LRP) [5] explicitly uses the feedforward graph structure of a 
deep neural networks to decompose the prediction. It computes a score for image pixels/regions 
that denote the importance of those particular regions to the trained model’s final prediction. This 
technique propagates the prediction backwards using purposely designed local propagation rules. 
 
Gradient class activation mapping (Grad-CAM) [6] produces visual explanations off the 
predictions made by CNNs. Grad-CAM uses the gradients with respect to the predicted class to 
create a coarse localization map that highlights the regions of greatest importance. This method 
uses global average pooling right before the final layer to analyze the pixel information, and is 
adaptable to previously trained CNN models. 
 

 
Figure 5. Prediction explainability visualization from Grad-CAM analysis.The pop row shows the Grad-

CAM progression for determining the important features with respect to a “cat” classification. The bottom 
row shows the same progression, but with respect to a “dog” prediction.[6] 

 
Of the methods and techniques uncovered in the literature review, Grad-CAM was selected as the 
best method for explaining CNN predictions. The previously trained models were modified so that 
the gradients could be exposed and analyzed. Furthermore, global average pooling was 
implemented and performed right before the final layer responsible for generating predictions. 
These modifications were done by enabling eager execution for the TensorFlow gradient tape. The 
models did not have to be retrained for the analysis to be completed. 
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2.7. Results 
Grad-CAM was used to generate a heatmap visualization for the previously trained CNN models. 
Figure 6 shows the areas that most contributed to the fire classification decision. This helps in 
understanding whether the model predicted fire based on pixels that contained fire, or if it was 
coincidental because the image contained objects that resembled fire. 
 

 
Figure 6. Grad-CAM verified the model is capturing firebased on the pixels that contain fire.(Left) Original 
image fed to the Grad-CAM algorithm. (Middle) heatmap visualization overlayed on the original image in 
red-green-blue format. (Right) Original image converted to grayscale then overlayed with the heat map for 

enhanced visibility (right). 
 

2.8. Conclusion 
The goal of this project was to investigate the explainability of previously trained mathematical 
models capable of recognizing fire in imagery data originating from an industrial environment, 
with few false positives/negatives. This research showed that some CNN models with high 
accuracy ignored the fire features and instead focused on other image areas showing traces of 
smoke, fire fighters, red engine trucks, etc. These models performed poorly on the testing data, 
and Grad-CAM was able to show why. The models that demonstrated high accuraccy and 
performed well on the testing data were shown to have high activation in the fire areas, as seen in 
Figure 7. This achievenment succesfully fulfills the objectives outlined for the project. 
 

 
Figure 7. Grad-CAM analysis on testing image.(Left) Original image fed to CNN. (Right) Grad-CAM output. 

(Middle) Heat map visualizations showing the important features that led to a fire prediction. 
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SUMMER INTERNSHIP POSTER COMPETION 

Each year, INL holds a poster competition regarding the cutting each technology and research in 
which the interns are engaged. This year, Roger Boza submitted a poster for each project in which 
he was involved. These posters were all submitted in the Nuclear Operations category. One poster, 
“Obstacle Detection for Drones Using Machine Learning,” won first place (Figure 8). 
 

 
Figure 8. Roger Boza holding the 1st place plaque for best Nuclear Operations poster at the 2021 INL intern 

poster competition. Image taken at FIU ARC. 
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