
 

STUDENT SUMMER INTERNSHIP TECHNICAL REPORT 
 

Autonomous Navigation and Radiation Mapping 
Platform - Radiation Sensor Package 

Development  

DOE-FIU SCIENCE & TECHNOLOGY  
WORKFORCE DEVELOPMENT PROGRAM 

 
 

Date submitted: 
December 10, 2021 

 
Principal Investigators:  

Thi Tran (DOE Fellow Student) 
Florida International University 

 
Alexander Pappas (Mentor) 

Washington River Protection Solutions 

Ravi Gudavalli Ph.D. (Program Manager) 
Florida International University 

 
Leonel Lagos Ph.D., PMP® (Program Director) 

Florida International University 
 

Submitted to: 
U.S. Department of Energy 

Office of Environmental Management 
Under Cooperative Agreement # DE-EM0005213 

 



 

 
 

DISCLAIMER 
This report was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor any agency thereof, nor any of their 
employees, nor any of its contractors, subcontractors, nor their employees makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information, apparatus, product, or process disclosed, or represents that its 
use would not infringe upon privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
government or any other agency thereof. The views and opinions of authors expressed herein do 
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EXECUTIVE SUMMARY 

This research work has been supported by the DOE-FIU Science & Technology Workforce 
Initiative, an innovative program developed by the U.S. Department of Energy’s Office of 
Environmental Management (DOE-EM) and Florida International University’s Applied Research 
Center (FIU-ARC). During the summer of 2021, a DOE Fellow intern, Thi Tran, spent 12 weeks 
doing a summer internship at Washington River Protection Solutions under the supervision and 
guidance of Technology Integration Project Manager Alexander Pappas. The intern’s project was 
initiated on May 17, 2021 and continued through August 5, 2021 with the objective of supporting 
the development of an autonomous radiation mapping robot by developing and integrating a 
radiation sensor package, as well as designing mount solutions for other sensor packages for the 
existing Clearpath Robotics® HuskyTM. 
 
To support the commitment of Washington River Protection Solutions (WRPS) to Hanford’s 
cleanup mission, the Chief Technology Office (CTO) continuously works to provide solutions that 
improve the safety and efficiency of operations through the maturation of technology. The research 
describes the improvement of the off-the-shelf robotics platform, the Clearpath Robotics® Husky 
(referred to as the Canary), which was equipped with a new sensor package as part of the effort of 
CTO to bolster workflow through autonomous radiation mapping. As part of the effort, the 
development of a radiation sensor package was necessary to aid in planar radiation mapping. 
Radiological mapping is essential in providing awareness to possible contamination and 
minimizing human exposure to radioactive dose. The radiation package was developed using two 
approaches: Jetson Nano and microcontroller (Arduino) interface, and direct sensor interface to a 
Raspberry Pi 4. Both methods provided data readings, but the direct interface with the Raspberry 
Pi 4 was selected due to the more robust and stable connection for relaying the radiation data to 
the on-board computer on the Canary. 
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1. INTRODUCTION 

With the urge to fulfill the cleanup mission at the Hanford site, the Chief Technology Office (CTO) 
at Washington River Protection Solutions (WRPS) continuously develops, matures, and 
implements technology to increase safety and efficiency in operations. Within this effort, CTO 
pursues development and maturation of commercially available robotic platforms for tasks 
identified through stakeholder engagement. Despite the available robots on the commercial 
market, there is still a lack of autonomous robotic systems to decrease human exposure to 
radioactive waste, as well as aid in bolstering data acquisition and supporting retrieval operations,.  

Within the available robotics platform at CTO, Clearpath Robotics® HuskyTM (also known as the 
Canary) was chosen to fully develop an autonomous radiation mapping platform. The Husky 
platform initially came with only cameras and multiple inertial measurement units (IMUs). It was 
not, however, equipped for hands-off operation or radiological mapping. Additional compute units 
and sensors were incorporated on the Canary to enhance its capabilities in autonomous navigation 
and localization. 

In addition, the scope of work also aimed to provide the Canary with autonomous radiation 
mapping capability. Radiological mapping allows the measurement the radioactivity level of 
contamination areas and provides awareness of the local dose rates. With the extent of sensor 
packages and fusing odometry data from multiple sensors, it enables high accuracy mapping of 
the area to facilitate more efficient monitoring of the dose rate of facilities at Hanford site. With 
all these benefits, deployment of radiation mapping capabilities on the Husky would have a 
significant impact on the Hanford clean-up mission. 
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2. MOUNTING SOLUTION DEVELOPMENT 

A new sensor package which included two light detection and ranging (LIDAR) -  the 
SLAMTEC® RPLIDAR A2 and the Intel® RealSenseTM LIDAR Camera L515- and three Intel® 
RealSense™ depth cameras – D415, D435, and D455, was included in the Husky. These stereo 
cameras with their depth sensing capabilities, allow extracting 3D information from the scene and 
generating point cloud. In conjunction to depth cameras, the two LIDARs were utilized for planar 
detection and motion planning. This package enabled an improvement in the navigation 
capabilities and localization of the Canary, not only in tight space, but also larger and complex 
space while producing a detail maps of the environment around. Additionally, this package was 
essential to the integration of radiation sensor package, which would be discussed in Section 3, in 
providing an accurate location and visualization of the local dose rate measure. 

Due to the difference in field of view and range covering amongst Realsense depth cameras, 
consideration was made regarding to the placement of the sensor. For the purpose of frontier 
navigation, all three depth cameras were placed facing forward to capture the most features around. 
The biggest depth sensor, D455, with a wider baseline, provided better accuracy compared to the 
D415 and D435. Thus, D455 was mounted facing directly forward and nearer to the ground. The 
other cameras, D415 and D435, were placed on the sides at an angle of 45 degrees to cover a wider 
area. Meanwhile, the solid-state LIDAR was mounted on top of the platform, also at an angle of 
45 degrees facing the rear. Lastly the RPLIDAR was mounted on top of the batteries to provide 
obstacle avoidance for the Husky. The mounting solutions for the depth sensor were designed 
using SolidWorks. 

 
Figure 1. Mounting solutions for depth cameras and LIDARs. 
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3. RADIATION SENSOR PACKAGE DEVELOPMENT 

3.1 Setup and Integration of Additional Compute Units 

A key component of the development of radiation sensor package was the communication and 
transmission of data amongst the radiation sensor package, the on-board computer on the Canary, 
and the additional sensor package for navigation, as described in Section 2. To deal with the 
massive influx of data coming from the additional sensors and LIDARs, two compute units, 
NVIDIA® Jetson Xavier™ and Jetson Nano™, were added to the configuration of the Husky. The 
two computers were beneficial to the system due to their powerful performance at compact size, 
which was ideal for critical embedded applications. The Husky on-board computer runs on Robot 
Operating System (ROS), which is an open-source framework for developing robotic applications. 
To integrate the new compute units on the Canary, ROS Melodic was installed to establish a 
common baseline with the onboard computer that was also updated to Melodic. 

A running ROS system can comprise an infinite amount of nodes, spread across multiple machines. 
Communication among Husky configurations was achieved by setting the configuration to the 
same master, the Husky on-board computer, via ROS_MASTER_URI. Each machine was set up 
to advertise itself by a recognizable name and IP address. This allowed for easier access to the 
NVIDIA devices from the main computer via Secure Shell Protocol (SSH). As a result, sensors 
like the depth cameras installed on the Jetson Xavier on the common network could be accessed 
and computing load could be distributed. 

Later on, the Jetson Nano was replaced with a Raspberry Pi 4 to power the radiation sensor board, 
retrieve the data stream from the sensor, and run the solid-state LIDAR. Although the Raspberry 
Pi 4 was not as powerful as the Jetson Nano, the Pi provided more stability, reliability, and 
robustness for communicating and data transmission from the radiation package. Although the 
setup for the Pi 4 was similar to others, it differed slightly since it uses Raspbian distribution 
instead of Ubuntu. 

 
Figure 2. Additional compute units. 

3.2 Development of Radiation Sensor Package 

The main goal of this project was to develop a radiation mapping system. To achieve this goal, a 
radiation sensor package was developed for integration into the Husky’s system. The radiation 
sensor package used a Type 5 Pocket Geiger Radiation Sensor, which was designed for embedded 
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systems. It features a measurement range of 0.05uSv/h to 10mSv/h at 0.01cpm to 300 Kcpm with 
a required measurement time of two minutes. The Pocket Geiger radiation sensor board has four 
pins: two for alimentation (+V, GND) and two for detecting signals (SIG, NS). The sensor pulls 
the radiation pin (SIG) to a high voltage level when it detects radiation. The board uses an X100-
7 PIN photodiode from FirstSensor for gamma-ray detection; however, its photodiode sensor is 
sensitive to noise. Thus, the board also comes with an accelerometer to detect corresponding false 
positives noticed through the noise pin (NS). There are currently two mediums to interface with 
the Pocket Geiger board: Arduino library and Raspberry Pi library. Both interfaces were tested to 
determine which would provide more stability and be compatible with ROS. 

3.2.1 Using Arduino Nano 

Table 1. Connection between Radiation Sensor and Arduino Nano 

Pocket Geiger Pin Arduino Nano Pin Standing for 

+V 3V3 Power Supply (3.3V) 

GND GND Ground 

SIG 2 Radiation-detection pulse pin 

NS 3 Noise-detection pulse pin 

 
Figure 3. Set up the Pocket Geiger radiation sensor on the Arduino Nano. 

For the nodes to communicate with each other, the rosserial package and library were installed on 
the Jetson Nano and Arduino Nano respectively. The package contained necessary extensions to 
integrate custom hardware like the radiation board into the ROS system using an Arduino. The 
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Arduino Nano was connected to the Jetson Nano via the USB serial port. Since there was no direct 
connection from the Arduino Nano to the ROS network, the rosserial package provided a node as 
a bridge between the two. 

When the Husky platform navigated autonomously, a state machine was implemented into its path 
to call for service or action to take readings from the sensor. Service and action both perform a call 
to a different function; however, an action is asynchronous, meaning it does not block other ROS 
processes. An action would be more beneficial for longer tasks and provide feedback during the 
execution. Using an action would be ideal, but since rosserial Arduino does not support ROS 
action, ROS service was used instead.  

Once the service received a request from the client, the Husky, it started setting up the radiation 
sensor and taking readings. The Pocket Geiger requires time to get a reliable reading. After a few 
test runs, it was observed that the sensor becomes stable when the error reading reaches 0.01. 
Therefore, the service was modified to send the first radiation reading to the state machine when 
the corresponding error falls within the range of 0.00 to 0.01. The finalized version of the code can 
be found in Appendix A. 

 

 
Figure 4. Result of running the code: test for available service (top) and logging radiation reading (bottom). 

During initial testing, the service returned a usable result reading only once out of 20 test runs even 
though the service was available, as shown in the top figure above. This was due to the unstable 
nature of services on Arduino, which was still in an experimental state. The common error 
appeared to be the failure of reading the serial port. Troubleshooting was performed, such as 
varying the baud rate and buffer, setting the baud rate in the console, and tweaking the Python 
library. However, the issues persisted, so an alternative solution was sought. Implementation of a 
Python library to run the Pocket Geiger sensor was accessible for the Raspberry Pi 4, as such, the 
Jetson Nano and Arduino Nano were replaced by the Pi for further testing. 

3.3 Using a Raspberry Pi 4 

Like the Arduino setup, a library for the sensor was installed on the Raspberry Pi 4. The Pocket 
Geiger was wired on general-purpose input and output (GPIO) pin-out on the Raspberry Pi. As 
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described in 3.2, the Raspberry Pi also needs to call the function to start setting and taking 
measurements of the sensor. rospy, a Python client library for ROS, and actionlib, a library for 
action, were included in the code for that purpose. The Raspberry Pi will act as an Action Server 
using multiple messages and service definitions that are generated from a custom action definition. 

 
Figure 5. Set up of the Pocket Geiger on the Raspberry Pi 4. 

Table 2. Connection between Radiation Sensor and Raspberry Pi 4 

Pocket Geiger Pin GPIO Pin Standing for 

+V 3V3 Power supply (DC 3.3V) 

GND GND Ground 

SIG GPIO24 Radiation-detection pulse pin 

NS GPIO23 Noise-detection pulse pin 

An action definition file contains three parts: goal, feedback, and result. Each part is a list of 
messages with field type and field line. In the above action definition, the Action Client (the State 
Machine) would send an empty goal to the Action Server (Raspberry Pi). As soon as the Server 
receives a request from the client, the Pi would start taking measurements and send the radiation 
reading and error to feedback. When the error reaches stability (from 0.0 to 0.02), the sensor will 
stop reading and return the radiation measurement to the result topic. The current version of the 
code can be found in Appendix A Section 2. The relationship of the Client/Server and how data is 
sent is shown more clearly in Figure 6. Figure 7 is a section of the feedback from the Raspberry 
Pi accepting the goal it receives from the Client, the State Machine. The feedback also showed the 
location of the Canary as well as the radiation and error measurements. Once the condition was 
met, the server sent the final radiation reading to the /result topic on the State Machine as shown 
in Figure 8. 



FIU-ARC-2020-800013920-04C-015                      Autonomous Navigation and Radiation Mapping Platform 
TOC-WP-21-5098                                                                                                             Radiation Sensor Package Development              
 

 8  

 
Figure 6. Diagram of action client and server interaction. 

 
Figure 7. Feedback shows server accepted goal from client and publishes readings every 5 seconds. 

Action 
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Raspberry 
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Action Client 
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feedback  

(Radiation, error) 



FIU-ARC-2020-800013920-04C-015                      Autonomous Navigation and Radiation Mapping Platform 
TOC-WP-21-5098                                                                                                             Radiation Sensor Package Development              
 

 9  

 
Figure 8. The server sent the radiation reading to the /result topic. 
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4. CONCLUSION 

Throughout the development of the radiation sensor, different methods were used to test the data 
retrieval from the radiation sensor. In the first approach, the radiation sensor was powered using a 
microcontroller that was connected to the Jetson Nano computer via a USB Serial Port. Even 
though the computer was able to receive data from the sensor, the connectivity between devices 
easily got lost when the service in ROS was called, while for the second approach using GPIO on 
the Raspberry Pi 4, the connectivity was robust and data acquisition was successful at every 
reading. 

The Pocket Geiger Radiation Sensor was recommended for use with the embedded systems such 
as Arduino, Raspberry Pi, etc. However, when it comes to integrating into the ROS system, using 
a Raspberry Pi would be a better option. Since the development of the ROS service in the rosserial 
library is still in an experimental state, publishing readings while checking for the requirement 
broke the connectivity amongst devices. Meanwhile, the Python environment in Raspberry Pi 
allowed the use of the ROS concept more efficiently and was not limited to the ROS service as in 
the first approach. Moreover, the Raspberry Pi bolstered consistency in retrieving data from the 
sensor since it did not require any bridge node. Thus, it would be ideal and more efficient to use a 
Raspberry Pi.  

To conclude, the radiation sensor package was successfully developed to be integrated into any 
platform for radiological usage. There were several obstacles in obtaining data from the radiation 
sensor at the beginning, however, the second approach which used the Raspberry Pi pinout was 
able to provide much more stable connectivity and reliable readings. The team was able to power 
the package by using the power source on the Husky platform. Through the implementation of the 
package, the Husky successfully performed the radiation mapping of the farms at the Hanford site. 
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APPENDIX A. 

Section 1: ROS Service 
 
#include <ros.h> 
#include <roscpp_tutorials/TwoInts.h> 
#include "RadiationWatch.h" 
 
ros::NodeHandle  nh; 
using roscpp_tutorials::TwoInts; 
 
RadiationWatch radiationWatch (2,3); 
int radiation; 
int error; 
int rad; 
int c; 
float error_log; 
int error_check(){ 
  bool i = true; 
  radiationWatch.setup(); 
  while (i){ 
      radiationWatch.loop(); 
      radiation = (int) (radiationWatch.uSvh()*1000); 
      error = (int) (radiationWatch.uSvhError()*1000); 
      error_log = radiationWatch.uSvhError()*1000; 
      char str[4]; 
      dtostrf(error_log, 6, 2, str); 
      nh.loginfo(str); 
      nh.spinOnce(); 
      if (error <= 100 && error > 0)  
           { 
            nh.spinOnce(); 
            rad = radiation; 
            i = false;} 
  } 
  return rad; 
  delay(5000); 
} 
 
void callback(const TwoInts::Request & req, TwoInts::Response & res){ 
   c = error_check(); 
   res.sum= c; 
} 
 
ros::ServiceServer<TwoInts::Request, TwoInts::Response> server("test_srv",&callback); 
 
void setup() 
{ 
  //Serial.begin(9600); 
  radiationWatch.setup(); 
  nh.initNode(); 
  nh.getHardware()-> setBaud(57600); 
  nh.advertiseService(server); 
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  //nh.advertise(chatter); 
} 
 
void loop(){ 
  nh.spinOnce(); 
  delay(5000); 
} 
 
Section 2: ROS Action  
 
#!/usr/bin/env python 
# -*- coding: utf-8 -*- 
import rospy 
import actionlib 
import time 
from PiPocketGeiger import RadiationWatch 
from radiation.msg import rad_testAction, rad_testFeedback, rad_testResult 
 
class ActionServer: 
  def __init__(self): 
    #self._action_name = name 
    self.server = actionlib.SimpleActionServer('rad_action_server', rad_testAction, 
execute_cb=self.execute_cb, auto_start=False) 
    self.server.start() 
 
  def execute_cb(self, goal): 
    i = True; 
    r = rospy.Rate(5000) 
    with RadiationWatch(24, 23) as radiationWatch: 
        feedback = rad_testFeedback() 
        result = rad_testResult() 
        while i: 
            success = False 
            readings = radiationWatch.status() 
            error = readings["uSvhError"] 
            feedback.radiation = readings["uSvh"] 
            feedback.error = readings["uSvhError"] 
            self.server.publish_feedback(feedback); 
            if (error<0.02 and error>0.0): 
                result.radiation = readings["uSvh"] 
                success = True 
                i = False 
 
        if success: 
                self.server.set_succeeded(result) 
if __name__ == '__main__': 
  rospy.init_node('rad_server') 
  server = ActionServer() 
  rospy.spin() 
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