

STUDENT SUMMER INTERNSHIP TECHNICAL REPORT

Autonomous Navigation and Radiation Mapping
Platform - Radiation Sensor Package

Development

DOE-FIU SCIENCE & TECHNOLOGY
WORKFORCE DEVELOPMENT PROGRAM

Date submitted:
December 10, 2021

Principal Investigators:

Thi Tran (DOE Fellow Student)
Florida International University

Alexander Pappas (Mentor)

Washington River Protection Solutions

Ravi Gudavalli Ph.D. (Program Manager)
Florida International University

Leonel Lagos Ph.D., PMP® (Program Director)

Florida International University

Submitted to:
U.S. Department of Energy

Office of Environmental Management
Under Cooperative Agreement # DE-EM0005213

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor any agency thereof, nor any of their
employees, nor any of its contractors, subcontractors, nor their employees makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe upon privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or any other agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States government or any agency thereof.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 iii

TABLE OF CONTENTS

TABLE OF CONTENTS ... iii

LIST OF FIGURES ... iv

LIST OF TABLES ... iv

EXECUTIVE SUMMARY ...1

1. INTRODUCTION ...2

2. MOUNTING SOLUTION DEVELOPMENT ..3

3. RADIATION SENSOR PACKAGE DEVELOPMENT...4

4. CONCLUSION ..10

APPENDIX A. ...11

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 iv

LIST OF FIGURES

Figure 1. Mounting solutions for depth cameras and LIDARs. .. 3
Figure 2. Additional compute units. ... 4
Figure 3. Set up the Pocket Geiger radiation sensor on the Arduino Nano. 5
Figure 4. Result of running the code: test for available service (top) and logging radiation reading
(bottom)... 6
Figure 5. Set up of the Pocket Geiger on the Raspberry Pi 4. .. 7
Figure 6. Diagram of action client and server interaction. ... 8
Figure 7. Feedback shows server accepted goal from client and publishes readings every 5
seconds. ... 8
Figure 8. The server sent the radiation reading to the /result topic. .. 9

LIST OF TABLES

Table 1. Connection between Radiation Sensor and Arduino Nano .. 5
Table 2. Connection between Radiation Sensor and Raspberry Pi 4 .. 7

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 1

EXECUTIVE SUMMARY

This research work has been supported by the DOE-FIU Science & Technology Workforce
Initiative, an innovative program developed by the U.S. Department of Energy’s Office of
Environmental Management (DOE-EM) and Florida International University’s Applied Research
Center (FIU-ARC). During the summer of 2021, a DOE Fellow intern, Thi Tran, spent 12 weeks
doing a summer internship at Washington River Protection Solutions under the supervision and
guidance of Technology Integration Project Manager Alexander Pappas. The intern’s project was
initiated on May 17, 2021 and continued through August 5, 2021 with the objective of supporting
the development of an autonomous radiation mapping robot by developing and integrating a
radiation sensor package, as well as designing mount solutions for other sensor packages for the
existing Clearpath Robotics® HuskyTM.

To support the commitment of Washington River Protection Solutions (WRPS) to Hanford’s
cleanup mission, the Chief Technology Office (CTO) continuously works to provide solutions that
improve the safety and efficiency of operations through the maturation of technology. The research
describes the improvement of the off-the-shelf robotics platform, the Clearpath Robotics® Husky
(referred to as the Canary), which was equipped with a new sensor package as part of the effort of
CTO to bolster workflow through autonomous radiation mapping. As part of the effort, the
development of a radiation sensor package was necessary to aid in planar radiation mapping.
Radiological mapping is essential in providing awareness to possible contamination and
minimizing human exposure to radioactive dose. The radiation package was developed using two
approaches: Jetson Nano and microcontroller (Arduino) interface, and direct sensor interface to a
Raspberry Pi 4. Both methods provided data readings, but the direct interface with the Raspberry
Pi 4 was selected due to the more robust and stable connection for relaying the radiation data to
the on-board computer on the Canary.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 2

1. INTRODUCTION

With the urge to fulfill the cleanup mission at the Hanford site, the Chief Technology Office (CTO)
at Washington River Protection Solutions (WRPS) continuously develops, matures, and
implements technology to increase safety and efficiency in operations. Within this effort, CTO
pursues development and maturation of commercially available robotic platforms for tasks
identified through stakeholder engagement. Despite the available robots on the commercial
market, there is still a lack of autonomous robotic systems to decrease human exposure to
radioactive waste, as well as aid in bolstering data acquisition and supporting retrieval operations,.

Within the available robotics platform at CTO, Clearpath Robotics® HuskyTM (also known as the
Canary) was chosen to fully develop an autonomous radiation mapping platform. The Husky
platform initially came with only cameras and multiple inertial measurement units (IMUs). It was
not, however, equipped for hands-off operation or radiological mapping. Additional compute units
and sensors were incorporated on the Canary to enhance its capabilities in autonomous navigation
and localization.

In addition, the scope of work also aimed to provide the Canary with autonomous radiation
mapping capability. Radiological mapping allows the measurement the radioactivity level of
contamination areas and provides awareness of the local dose rates. With the extent of sensor
packages and fusing odometry data from multiple sensors, it enables high accuracy mapping of
the area to facilitate more efficient monitoring of the dose rate of facilities at Hanford site. With
all these benefits, deployment of radiation mapping capabilities on the Husky would have a
significant impact on the Hanford clean-up mission.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 3

2. MOUNTING SOLUTION DEVELOPMENT

A new sensor package which included two light detection and ranging (LIDAR) - the
SLAMTEC® RPLIDAR A2 and the Intel® RealSenseTM LIDAR Camera L515- and three Intel®
RealSense™ depth cameras – D415, D435, and D455, was included in the Husky. These stereo
cameras with their depth sensing capabilities, allow extracting 3D information from the scene and
generating point cloud. In conjunction to depth cameras, the two LIDARs were utilized for planar
detection and motion planning. This package enabled an improvement in the navigation
capabilities and localization of the Canary, not only in tight space, but also larger and complex
space while producing a detail maps of the environment around. Additionally, this package was
essential to the integration of radiation sensor package, which would be discussed in Section 3, in
providing an accurate location and visualization of the local dose rate measure.

Due to the difference in field of view and range covering amongst Realsense depth cameras,
consideration was made regarding to the placement of the sensor. For the purpose of frontier
navigation, all three depth cameras were placed facing forward to capture the most features around.
The biggest depth sensor, D455, with a wider baseline, provided better accuracy compared to the
D415 and D435. Thus, D455 was mounted facing directly forward and nearer to the ground. The
other cameras, D415 and D435, were placed on the sides at an angle of 45 degrees to cover a wider
area. Meanwhile, the solid-state LIDAR was mounted on top of the platform, also at an angle of
45 degrees facing the rear. Lastly the RPLIDAR was mounted on top of the batteries to provide
obstacle avoidance for the Husky. The mounting solutions for the depth sensor were designed
using SolidWorks.

Figure 1. Mounting solutions for depth cameras and LIDARs.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 4

3. RADIATION SENSOR PACKAGE DEVELOPMENT

3.1 Setup and Integration of Additional Compute Units

A key component of the development of radiation sensor package was the communication and
transmission of data amongst the radiation sensor package, the on-board computer on the Canary,
and the additional sensor package for navigation, as described in Section 2. To deal with the
massive influx of data coming from the additional sensors and LIDARs, two compute units,
NVIDIA® Jetson Xavier™ and Jetson Nano™, were added to the configuration of the Husky. The
two computers were beneficial to the system due to their powerful performance at compact size,
which was ideal for critical embedded applications. The Husky on-board computer runs on Robot
Operating System (ROS), which is an open-source framework for developing robotic applications.
To integrate the new compute units on the Canary, ROS Melodic was installed to establish a
common baseline with the onboard computer that was also updated to Melodic.

A running ROS system can comprise an infinite amount of nodes, spread across multiple machines.
Communication among Husky configurations was achieved by setting the configuration to the
same master, the Husky on-board computer, via ROS_MASTER_URI. Each machine was set up
to advertise itself by a recognizable name and IP address. This allowed for easier access to the
NVIDIA devices from the main computer via Secure Shell Protocol (SSH). As a result, sensors
like the depth cameras installed on the Jetson Xavier on the common network could be accessed
and computing load could be distributed.

Later on, the Jetson Nano was replaced with a Raspberry Pi 4 to power the radiation sensor board,
retrieve the data stream from the sensor, and run the solid-state LIDAR. Although the Raspberry
Pi 4 was not as powerful as the Jetson Nano, the Pi provided more stability, reliability, and
robustness for communicating and data transmission from the radiation package. Although the
setup for the Pi 4 was similar to others, it differed slightly since it uses Raspbian distribution
instead of Ubuntu.

Figure 2. Additional compute units.

3.2 Development of Radiation Sensor Package

The main goal of this project was to develop a radiation mapping system. To achieve this goal, a
radiation sensor package was developed for integration into the Husky’s system. The radiation
sensor package used a Type 5 Pocket Geiger Radiation Sensor, which was designed for embedded

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 5

systems. It features a measurement range of 0.05uSv/h to 10mSv/h at 0.01cpm to 300 Kcpm with
a required measurement time of two minutes. The Pocket Geiger radiation sensor board has four
pins: two for alimentation (+V, GND) and two for detecting signals (SIG, NS). The sensor pulls
the radiation pin (SIG) to a high voltage level when it detects radiation. The board uses an X100-
7 PIN photodiode from FirstSensor for gamma-ray detection; however, its photodiode sensor is
sensitive to noise. Thus, the board also comes with an accelerometer to detect corresponding false
positives noticed through the noise pin (NS). There are currently two mediums to interface with
the Pocket Geiger board: Arduino library and Raspberry Pi library. Both interfaces were tested to
determine which would provide more stability and be compatible with ROS.

3.2.1 Using Arduino Nano

Table 1. Connection between Radiation Sensor and Arduino Nano

Pocket Geiger Pin Arduino Nano Pin Standing for

+V 3V3 Power Supply (3.3V)

GND GND Ground

SIG 2 Radiation-detection pulse pin

NS 3 Noise-detection pulse pin

Figure 3. Set up the Pocket Geiger radiation sensor on the Arduino Nano.

For the nodes to communicate with each other, the rosserial package and library were installed on
the Jetson Nano and Arduino Nano respectively. The package contained necessary extensions to
integrate custom hardware like the radiation board into the ROS system using an Arduino. The

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 6

Arduino Nano was connected to the Jetson Nano via the USB serial port. Since there was no direct
connection from the Arduino Nano to the ROS network, the rosserial package provided a node as
a bridge between the two.

When the Husky platform navigated autonomously, a state machine was implemented into its path
to call for service or action to take readings from the sensor. Service and action both perform a call
to a different function; however, an action is asynchronous, meaning it does not block other ROS
processes. An action would be more beneficial for longer tasks and provide feedback during the
execution. Using an action would be ideal, but since rosserial Arduino does not support ROS
action, ROS service was used instead.

Once the service received a request from the client, the Husky, it started setting up the radiation
sensor and taking readings. The Pocket Geiger requires time to get a reliable reading. After a few
test runs, it was observed that the sensor becomes stable when the error reading reaches 0.01.
Therefore, the service was modified to send the first radiation reading to the state machine when
the corresponding error falls within the range of 0.00 to 0.01. The finalized version of the code can
be found in Appendix A.

Figure 4. Result of running the code: test for available service (top) and logging radiation reading (bottom).

During initial testing, the service returned a usable result reading only once out of 20 test runs even
though the service was available, as shown in the top figure above. This was due to the unstable
nature of services on Arduino, which was still in an experimental state. The common error
appeared to be the failure of reading the serial port. Troubleshooting was performed, such as
varying the baud rate and buffer, setting the baud rate in the console, and tweaking the Python
library. However, the issues persisted, so an alternative solution was sought. Implementation of a
Python library to run the Pocket Geiger sensor was accessible for the Raspberry Pi 4, as such, the
Jetson Nano and Arduino Nano were replaced by the Pi for further testing.

3.3 Using a Raspberry Pi 4

Like the Arduino setup, a library for the sensor was installed on the Raspberry Pi 4. The Pocket
Geiger was wired on general-purpose input and output (GPIO) pin-out on the Raspberry Pi. As

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 7

described in 3.2, the Raspberry Pi also needs to call the function to start setting and taking
measurements of the sensor. rospy, a Python client library for ROS, and actionlib, a library for
action, were included in the code for that purpose. The Raspberry Pi will act as an Action Server
using multiple messages and service definitions that are generated from a custom action definition.

Figure 5. Set up of the Pocket Geiger on the Raspberry Pi 4.

Table 2. Connection between Radiation Sensor and Raspberry Pi 4

Pocket Geiger Pin GPIO Pin Standing for

+V 3V3 Power supply (DC 3.3V)

GND GND Ground

SIG GPIO24 Radiation-detection pulse pin

NS GPIO23 Noise-detection pulse pin

An action definition file contains three parts: goal, feedback, and result. Each part is a list of
messages with field type and field line. In the above action definition, the Action Client (the State
Machine) would send an empty goal to the Action Server (Raspberry Pi). As soon as the Server
receives a request from the client, the Pi would start taking measurements and send the radiation
reading and error to feedback. When the error reaches stability (from 0.0 to 0.02), the sensor will
stop reading and return the radiation measurement to the result topic. The current version of the
code can be found in Appendix A Section 2. The relationship of the Client/Server and how data is
sent is shown more clearly in Figure 6. Figure 7 is a section of the feedback from the Raspberry
Pi accepting the goal it receives from the Client, the State Machine. The feedback also showed the
location of the Canary as well as the radiation and error measurements. Once the condition was
met, the server sent the final radiation reading to the /result topic on the State Machine as shown
in Figure 8.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 8

Figure 6. Diagram of action client and server interaction.

Figure 7. Feedback shows server accepted goal from client and publishes readings every 5 seconds.

Action
Server

Raspberry
Pi

Action Client

State
Machine

ROS Topics

goal (empty)

cancel
status

result (radiation)
feedback

(Radiation, error)

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 9

Figure 8. The server sent the radiation reading to the /result topic.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 10

4. CONCLUSION

Throughout the development of the radiation sensor, different methods were used to test the data
retrieval from the radiation sensor. In the first approach, the radiation sensor was powered using a
microcontroller that was connected to the Jetson Nano computer via a USB Serial Port. Even
though the computer was able to receive data from the sensor, the connectivity between devices
easily got lost when the service in ROS was called, while for the second approach using GPIO on
the Raspberry Pi 4, the connectivity was robust and data acquisition was successful at every
reading.

The Pocket Geiger Radiation Sensor was recommended for use with the embedded systems such
as Arduino, Raspberry Pi, etc. However, when it comes to integrating into the ROS system, using
a Raspberry Pi would be a better option. Since the development of the ROS service in the rosserial
library is still in an experimental state, publishing readings while checking for the requirement
broke the connectivity amongst devices. Meanwhile, the Python environment in Raspberry Pi
allowed the use of the ROS concept more efficiently and was not limited to the ROS service as in
the first approach. Moreover, the Raspberry Pi bolstered consistency in retrieving data from the
sensor since it did not require any bridge node. Thus, it would be ideal and more efficient to use a
Raspberry Pi.

To conclude, the radiation sensor package was successfully developed to be integrated into any
platform for radiological usage. There were several obstacles in obtaining data from the radiation
sensor at the beginning, however, the second approach which used the Raspberry Pi pinout was
able to provide much more stable connectivity and reliable readings. The team was able to power
the package by using the power source on the Husky platform. Through the implementation of the
package, the Husky successfully performed the radiation mapping of the farms at the Hanford site.

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 11

APPENDIX A.

Section 1: ROS Service

#include <ros.h>
#include <roscpp_tutorials/TwoInts.h>
#include "RadiationWatch.h"

ros::NodeHandle nh;
using roscpp_tutorials::TwoInts;

RadiationWatch radiationWatch (2,3);
int radiation;
int error;
int rad;
int c;
float error_log;
int error_check(){
 bool i = true;
 radiationWatch.setup();
 while (i){
 radiationWatch.loop();
 radiation = (int) (radiationWatch.uSvh()*1000);
 error = (int) (radiationWatch.uSvhError()*1000);
 error_log = radiationWatch.uSvhError()*1000;
 char str[4];
 dtostrf(error_log, 6, 2, str);
 nh.loginfo(str);
 nh.spinOnce();
 if (error <= 100 && error > 0)
 {
 nh.spinOnce();
 rad = radiation;
 i = false;}
 }
 return rad;
 delay(5000);
}

void callback(const TwoInts::Request & req, TwoInts::Response & res){
 c = error_check();
 res.sum= c;
}

ros::ServiceServer<TwoInts::Request, TwoInts::Response> server("test_srv",&callback);

void setup()
{
 //Serial.begin(9600);
 radiationWatch.setup();
 nh.initNode();
 nh.getHardware()-> setBaud(57600);
 nh.advertiseService(server);

FIU-ARC-2020-800013920-04C-015 Autonomous Navigation and Radiation Mapping Platform
TOC-WP-21-5098 Radiation Sensor Package Development

 12

 //nh.advertise(chatter);
}

void loop(){
 nh.spinOnce();
 delay(5000);
}

Section 2: ROS Action

#!/usr/bin/env python
-*- coding: utf-8 -*-
import rospy
import actionlib
import time
from PiPocketGeiger import RadiationWatch
from radiation.msg import rad_testAction, rad_testFeedback, rad_testResult

class ActionServer:
 def __init__(self):
 #self._action_name = name
 self.server = actionlib.SimpleActionServer('rad_action_server', rad_testAction,
execute_cb=self.execute_cb, auto_start=False)
 self.server.start()

 def execute_cb(self, goal):
 i = True;
 r = rospy.Rate(5000)
 with RadiationWatch(24, 23) as radiationWatch:
 feedback = rad_testFeedback()
 result = rad_testResult()
 while i:
 success = False
 readings = radiationWatch.status()
 error = readings["uSvhError"]
 feedback.radiation = readings["uSvh"]
 feedback.error = readings["uSvhError"]
 self.server.publish_feedback(feedback);
 if (error<0.02 and error>0.0):
 result.radiation = readings["uSvh"]
 success = True
 i = False

 if success:
 self.server.set_succeeded(result)
if __name__ == '__main__':
 rospy.init_node('rad_server')
 server = ActionServer()
 rospy.spin()

	DISCLAIMER
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	2. MOUNTING SOLUTION DEVELOPMENT
	3. RADIATION SENSOR PACKAGE DEVELOPMENT
	4. CONCLUSION
	APPENDIX A.

