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EXECUTIVE SUMMARY  

During the summer of 2022, a DOE Fellow, Aurelien Meray, spent ten weeks in the Bay Area of 
California where he spent the first two weeks creating a documentation page for the PyLEnM 
python package at Lawrence Berkeley National Laboratory, and the remaining eight weeks 
participating in an Artificial Intelligence Bootcamp called the Frontier Development Laboratory 
(FDL). He was under the supervision and guidance of Research Scientists, Dr. Zexuan Xu and Dr. 
Haruko Wainwright. During the FDL research period, Aurelien worked with three other Ph.D. 
students from across the United States. This report will outline the work performed over the 
summer but mainly cover the individual contributions made by Aurelien. 
 
Contamination of soil and groundwater is a major issue worldwide. It frequently takes decades to 
clean up contaminated sites and to keep track of natural attenuation. Due to extreme changes in 
climate i.e., evapotranspiration/precipitation, this can remobilize contaminants and spread them 
throughout affected groundwaters. Site managers and decision-makers can assess the potential 
effects and take prompt action using technologies for quick and accurate pollutant plume 
prediction under future climatic scenarios using machine learning techniques. The Fourier Neural 
Operator (FNO), a recent advancement in machine learning, has proven to be successful at learning 
partial differential equations (PDEs) and is suitable for use in this context. 
 
In this work, two versions of the FNO enhanced with U-Net architectures were used to model 
multiple dimentions: UFNO-3D and UFNO-2D. With these networks, surrogate flow and transport 
models were created using physics simulations representing the Savannah River Site (SRS) F-
Area. 
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1. INTRODUCTION 

1.1. PyLEnM Python Package 
The Python package, PyLEnM (Python for Long-term Environmental Monitoring), is a 
comprehensive machine learning (ML) framework for long-term groundwater contamination 
monitoring [1]. PyLEnM seeks to create a smooth data-to-ML pipeline with a number of useful 
features, including QA/QC, coincident/co-located data identification, automatic ingestion and 
processing of publicly accessible spatial data layers, and unique data summarization/visualization. 
During the first two weeks of the summer experience, Mr. Meray worked on creating a 
documentation page for the package.  

1.2. Frontier Development Laboratory (FDL) 
1.2.1. Program Description 
Frontier Development Laboratory (FDL) uses artificial intelligence (AI) to advance scientific 
research and create new tools that can be used to address some of the most pressing problems 
facing humanity. These issues span a wide range, from the results of climate change to forecasting 
space weather. NASA, the Department of Energy (DOE), and the European Space Agency (ESA) 
are partners in the public-private FDL partnership. The program brings together some of the most 
brilliant minds in the fields of space science, artificial intelligence, and business with the support 
of DOE's Artificial Intelligence & Technology Office (AITO), NASA HQ, NASA ARC, NASA 
MSFC, the SETI Institute, and commercial AI partners Google Cloud, Nvidia, USGS, 
Luxembourg Space Agency, Pasteur Labs & Institute for Simulation Intelligence Intel, and Planet. 

1.2.1. Research Project Introduction  
Millions of people worldwide face a serious health danger from groundwater contamination. 
Industrial or mining operations, and nuclear waste storage grounds are just some of the locations 
that can present a range of health and environmental risks due to presence of harmful chemicals. 
Toxic substances can enter surrounding ground or surface waters, contaminating a source of 
drinking water for people, and they can also be ingested by plants and animals. Hazardous 
materials must therefore be properly managed at contaminated sites to stop them from harming 
people, animals, or natural systems. Due to global climate change, which has already generated 
visible consequences including temperature increase, sea level rise, increased glacier retreat, 
increased extreme weather events, and many more, additional challenges occur and increase 
hazards. 
This research aims to speed up the assessment of climate change effects on groundwater polluted 
sites. Extreme weather conditions will alter when and how contaminants are released, and they 
most likely will have a significant effect on groundwater flow and contamination transport by 
raising the recharge rate (which is related to precipitation). It would eventually result in quicker 
contaminant transport and plume remobilization, increasing the risk to the local environment as 
the contaminating plume moved away from the contaminated location. 
Using physical simulations of groundwater concentrations and contaminant movement like 
Amanzi is one approach to evaluate this issue [2]. Nevertheless, the influence of climate change 
on groundwater is still difficult to predict. We are dealing with multiscale challenges in addition 
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to numerous uncertainties in both physical simulation of groundwater flow and contaminant 
transfer and uncertainties in climate models. Models for predicting climate change are worldwide 
with an uneven resolution (10–100 km), whereas the issue of water contamination is local (1-
10km). 
Our main objective was to develop a surrogate model that can help in addressing the impact of 
climate resilience on groundwater flow and contamination transport on the Savannah River site, 
with the hope of eventually expanding the model to more general contaminated locations. An 
approximate technique that simulates the behavior of an expensive computation or process is 
known as a surrogate model [3]. The development of an unsupervised methodology to produce 
data-driven climate patterns without querying a large spatiotemporal climate dataset is a secondary 
but crucial goal. Climate resilience in this context is the capacity of contaminated places to return 
to their original conditions after being impacted by the effects of climate change. With the use of 
this tool, we hope to assist site managers in making appropriate and swift action. 
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2. RESEARCH DESCRIPTION 

2.1. PyLEnM Documentation 
The process of properly documenting the code was essential to ensuring that it could be updated 
and used by other scientists in the future. The Google docstring format was applied in order to be 
consistent with the documentation. This format consists of a description of the class or function, 
"Args," which contains the name, data type, and a brief description of each parameter, and 
"Returns," which summarizes the results of the program's termination. Figure 1 below displays 
two functions, "setData" and "getConstructionData," with the corresponding docstrings 
highlighted in yellow. 

 
Figure 1: Example functions with docstring format. 

An advantage of having proper docstring documentation of code is the ability to automatically 
generate an HTML page with the documentation in a clear layout. This page was generated using 
a system called Read the Docs, an open-source software documentation hosting and versioning 
service [4]. This feature helps others find out how to use the functions that were written. Figure 2 
shows the same two functions described previously in the autogenerated HTML page using Read 
the Docs. 
 



FIU-ARC-2021-800013920-04C-013              DL Surrogate Modeling for Groundwater Contamination Sites 
 

 5  

 
Figure 2: Read the Docs page showing the function documentation. 

2.2. FDL Research Project 
This section will highlight the information and procedures that were used to forecast specific flow 
and transport properties. 

2.2.1. Simulation Data 
Customized contamination flow and transport physics simulations were produced using Amanzi-
ATS software to construct the surrogate model for this project. The simulations represent the 
groundwater contamination location at the Department of Energy's (DOE) Savannah River Site 
(SRS) F-Area. To provide variety to the dataset, a total of 1000 simulations were performed with 
input parameters that were randomly selected from a range. The 664 successful simulations out of 
the 1000 that were attempted were used for this research. There are 12 input values for each 
sample, including subsurface and climate variables like the upper layer's permeability and porosity 
as well as the measure of the pore-size distribution (represented as m), residual water content, 
recharge history, mid-century recharge, late-century recharge, seepage rate, and initial 
contaminant concentration (represented as seepage concentration). The minimum and maximum 
values from the 664 samples are displayed as U in Table 1. (a, b).  

Table 1: Simulations of flow and transport are conducted using physical model parameters. U (a, b) 
represents the uniform distribution where a is the lowest value and b is the highest value. For various 

physical simulations, we choose random samples from those uniform distributions of model parameters. 
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A two-dimensional cross-section of the SRS F-Area in time is the result of the simulations. Despite 
the fact that the raw output files had several output variables, only four of them were used for this 
project. These include hydraulic head, tritium concentration, and Darcy velocity in both the 
horizontal and vertical directions (x and z). The simulation's outputs include yearly data from 1954 
to 2100; however, for modelling reasons, we selected 5-year intervals beginning in 1955. 

2.2.2. Transformations 
Several modifications were used to make the input and output files useful for machine learning. 
The scalar input variables were broadcasted into the output size to guarantee that the inputs and 
outputs had the same dimensional shape. The same scalar values were projected to the output 
number of grids z and x, which was 24 by 257 respectively. Constant values were imputed into 
various strata of the cross-section thanks to extra domain knowledge of the subsurface at this 
specific site. The first five columns of Figure 3 input display this layering. 

 
Figure 3: Input after applying the transformations. 

 
The three values indicating the historical (1954-2020), mid-century (2020-2060), and late-century 
(2060-2100) were combined into one channel because recharge is a time-varying attribute. The 
seepage rate and cap rate underwent the same transition, with seepage only applying prior to 1988 
and cap rate only applying following 1988. The grid's temporal dimension, together with its 
horizontal and vertical directions (designated as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑥𝑥, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑧𝑧, and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑡𝑡), were also recorded. 
After undergoing these changes, each sample's final dimensional shape can be expressed as 
𝑚𝑚(𝑥𝑥, 𝑡𝑡)  =  (𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛), where 𝑛𝑛𝑛𝑛 denotes the size of 𝑧𝑧, 𝑛𝑛𝑛𝑛 denotes the size of 𝑥𝑥, nt denotes 
the number of time steps, and 𝑛𝑛𝑛𝑛 is the number of encoded parameters. Our input shape is 664 ×
 (24, 257, 30, 11) consequently. 

2.2.3. Model architecture and approach 
To simulate the flow and transport model, we tried two neural network designs U-FNO-3D and U-
FNO-2D. Both are U-Net enhanced versions (U-FNO) of the Fourier Neural Operators (FNO). 
The FNO is the first ML-based technique to successfully predict turbulent flows with zero-shot 
super-resolution [5]. It accomplishes this by mapping input-output pairs between spaces with 
unlimited dimensions. Wen et al. introduced a U-Net architecture to each Fourier transform layer 
and observed better performance on their simulation data [6]. Despite losing the ability to train 
with data of varied resolutions, this additional U-Net convolutional mapping achieved a lower 
training/test error for multi-phase flow predictions. For these reasons, our team adapted two 
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versions of U-FNO as U-FNO-3D and U-FNO-2D where the latter is a recurrent version. 
Conceptual versions of the two architectures can be seen in Figure 4. 

 
Figure 4: U-FNO 3D (a) and 2D (b) architectural models. 

2.2.4 Loss Function 
To optimize the performance of our model, four loss functions were established for testing. We 
included both data-driven factors and physical constraints in our loss functions. Loss functions are 
essentially the mis-fit between our prediction and the physical simulation. Below are simplified 
explanations of each of the losses: 

• 𝑳𝑳𝟎𝟎: Mean Relative Error (MRE): mean relative error under L2 normalization. 
• 𝑳𝑳𝟏𝟏: Spatial Derivatives: first derivative if the x and z directions under L2 normalization. 
• 𝑳𝑳𝟐𝟐: Spatial Derivatives on boundary: same as L1 but for contaminant values larger than 

the Maximum Contaminant Level (MCL). 
• 𝑳𝑳𝟑𝟑: No flow boundary: physical constraints for Darcy velocity and hydraulic head 

 
The final loss function is the summation of the four losses above: 

𝑳𝑳 =  𝑳𝑳𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑳𝑳𝟏𝟏  +  𝜷𝜷𝟐𝟐𝑳𝑳𝟐𝟐  + 𝜷𝜷𝟑𝟑𝑳𝑳𝟑𝟑 
where the 𝛽𝛽’s are the factors to weigh each loss differently. 
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3. RESULTS AND ANALYSIS 

3.1. PyLEnM Documentation 
The finalized version of the documentation page was published at https://pylenm.readthedocs.io/. 
Users can navigate through the webpage and discover how to install the package, how to import it 
in their python environment, and see a detailed description of each function available for use. Users 
can also see example Jupyter notebooks that go over most of the package’s core functionality. The 
documentation homepage can be seen in Figure 3. 

 
Figure 5: PyLEnM Documentation Home Page. 

3.2. FDL Research Project 
3.2.1. Architecture Evaluation 
We checked to see if our predictions outperformed those of the original Fourier Neural Operator. 
As can be observed in Figure 6, the UFNO-2D and UFNO-3D versions of our architectures 
outperformed the non-U-Net version. 

https://pylenm.readthedocs.io/
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Figure 6: Evaluation of U-FNO and FNO. 

3.2.2. Loss Function Evaluation 
We performed a number of tests to identify the components of our loss function that had the 
greatest impact on reducing the overall error. To provide a baseline for comparison, we first set 
the betas to zero, which is equal to employing the MRE as the sole loss function. Then, in order to 
see the various contributions, we tried applying weights to each beta value independently. This 
demonstrated to us that the strongest influence on lowering the MRE was the 𝑳𝑳𝟏𝟏 where we take 
the first derivative of the horizontal and vertical direction. However, this beat the single best loss 
function outcome when all three losses were taken into account. This is the loss function that we 
ultimately used, with each beta equal to 0.1. These results are shown in Figure 7. 

 
Figure 7: Comparing the different loss functions.  
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Table 2: All the experiments compared using the MRE and MSE 

 
Once we determined that the combination of 𝜷𝜷𝟏𝟏 = 𝜷𝜷𝟐𝟐 = 𝜷𝜷𝟑𝟑 = 𝟎𝟎. 𝟏𝟏 produced the best results, we 
trained the U-FNO-2D and 3D for a total of 150 epochs to have the finals prediction models. The 
results for all of the experiments are shown in Table 2. With these trained models, we can now use 
them to predict on inputs the model has never been seen before but within the sample space 
provided in Table 1. Below in Figure 8 is an example of what the model predicts in comparison to 
the ground truth. 

 
Figure 8: Tritium plume prediction on a sample from the test set using the U-FNO-3D. Left most 

column is the ground truth, middle column is the prediction, and right most column is the difference 
between the ground truth and the prediction. 
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4. CONCLUSION 

The machine learning-based multi-scale digital twin has been successfully created. By using a 
surrogate model, we lessen the computational load of flow and transport calculations. For site 
managers, our physics-based surrogate model facilitates quick decision-making. With a wide 
variety of conceivable combinations of climatic and subsurface uncertainty, they may immediately 
evaluate spatial-temporal contaminant fluctuations. To provide safe drinking water in the face of 
climate change uncertainty, the movement of harmful substances in groundwater needs to be 
carefully studied. The availability of this technology for any site worldwide is our long-term 
objective for the team. More generalized, location-independent physical simulations are required, 
along with distinctive global climatic patterns, to achieve this. 
Participating in the FDL program summer was a great experience. Aurelien has learned a lot more 
than he expected to and enjoyed his time meeting other researchers from different walks of life. 

 
Figure 9: DOE Fellow, Aurelien (right), with his FDL team onsite the SETI Institute in Mountain View, 

California.  
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