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EXECUTIVE SUMMARY  

This research work has been supported by the DOE-FIU Science & Technology Workforce 

Development Initiative, an innovative program developed by the U.S. Department of Energy’s 

Office of Environmental Management (DOE-EM) and Florida International University’s Applied 

Research Center (FIU-ARC). During the summer of 2023, a DOE Fellow intern, Aris Duani Rojas, 

spent 10 weeks doing a summer internship at Pacific Northwest National Laboratory under the 

supervision and guidance of Dr. Timothy Johnson. The intern’s project was initiated on June 5, 

2023, and continued through August 11, 2023, with the objective of using deep learning algorithms 

to develop an automatic system to detect abnormal conductivity values in the Savannah River 

Site’s F-Area Basin 3 Cap. The purpose of this system is to understand the seepage of water 

through the basin cap by analyzing Electrical Resistivity Tomography (ERT) data collected on the 

site. 
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1. INTRODUCTION  

Between 1955 to 1988, the F-Area Basins at the U.S. Department of Energy’s (DOE) Savannah 

River Site (SRS) received approximately 1.8 billion gallons of low-level acidic waste from the 

processing of uranium slugs and irradiated duel in the F-Area Separations Facility. The acidic 

waste contained a variety of radionuclides and dissolved metals that, after entering the basin, either 

evaporated or seeped into the underlying soil. This seepage contaminated the groundwater with 

radionuclides such as plutonium isotopes, cesium-137, strontium-90, uranium isotopes, iodine-

129, technetium-99, and tritium. [1] 

As part of the remediation efforts, in 1991, the basins were closed by dewatering them, stabilizing 

the remaining waste, and covering them with a low-permeability, multilayer cap to reduce the 

rainwater infiltration. In 1997, a pump-treat-and-reinjection system was introduced that trapped 

untreatable tritium in a continuous loop. In 2004, the pump-treat-and-reinjection system was 

replaced with a hybrid funnel-and-gate system that aimed to slow the migration of the 

contaminated groundwater and funnel it through treatment zones in the gates. There have also been 

many geophysical surveys carried out in the wetlands to map radiological hotspots and monitor 

seasonal behavior of contaminants. After many years of active treatment, low levels of 

radionuclide contamination still remain in the groundwater as it exits the treatment zones. [2] 

For the active treatments to remain as effective as they currently are, an important objective is to 

ensure that the different zones of vulnerability remain protected. One zone of vulnerability, and 

the focus in this report, is the cap on each of the basins. If these caps begin to lose effectiveness 

and allow rainwater infiltration, they can cause more radionuclides to be mobilized and migrate to 

the groundwater. As such, to monitor the structural integrity and effectiveness of the caps, a 

technique known as Electrical Resistivity Tomography (ERT) was used. In July 2022 DOE 

scientists involved in the Advanced Long-Term Environmental Monitoring Systems (ALTEMIS) 

Project and Savannah River Nuclear Solutions (SRNS) Area Completion Project (ACP) worked 

collaboratively to install an ERT array at the F-Area Hazardous Waste Management Facility 

(FHWMF) along the cap of F-Area Basin 3. The goal of ERT is to monitor the seepage of water 

through the clay layer in the cap by measuring its electrical conductivity (and how it changes over 

time.) [3] 

During the summer of 2023, DOE Fellow Aris Duani Rojas, with the support of his mentor, Dr. 

Timothy Johnson, developed an automatic system that can determine if there were any abnormally 

high conductivity values, where those values were, and how severe they were given the 

conductivity values obtained using ERT. This can then be translated into determining if there was 

any rainwater seepage and when and where it occurred. These results are automatically converted 

into 3D visualizations that a human user can move, pan, and zoom in. A human user can quickly 

review the results of the system and determine whether there has been any seepage or not. They 

can then open the visualization if they think further analysis is needed. This eliminates the need 

for manpower to manually monitor, analyze, and visualize the conductivity values every day to 
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determine if there are weaknesses in the cap, to significantly reduce overall monitoring cost and 

risk.  
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2. RESEARCH DESCRIPTION 

This research problem can be defined as anomaly detection in the conductivity values obtained 

from ERT measurements collected at the SRS along the cap of F-Area Basin 3. The data available 

included 729 files, each containing the conductivity values for 1,465,082 points in an XYZ space. 

Since there is currently no rainwater seepage through the cap, the 729 files of data can be 

considered as baseline data. Timeseries data were also available which included 32,142 rows of 

temperature and rainfall readings in 15-minute intervals. 

A popular and effective deep learning algorithm to detect anomalies is the autoencoder. It has two 

parts: an encoder and a decoder. The encoder works by taking an input X and mapping it to an 

embedding tensor Z. The decoder works by taking the embedding tensor Z and mapping it to an 

output Y. There are constraints placed on the shape of the embedding tensor Z and the output 

tensor Y. First, the shape of the embedding tensor Z must be less than the shape of the input X. 

Second, the shape of the output Y must be equal to the shape of the input X. The first condition 

forces the Deep Neural Network (DNN) to learn the patterns in the data when compressing the 

input X to embedding Z, otherwise the DNN could just become an identity function. The second 

condition is to allow the DNN to compare the reconstructed output Y with the original input X 

since they both have the same shape.  

The concept is that the baseline data X is fed as input to the DNN where it gets compressed and 

decompressed into the output Y. The DNN can then evaluate the difference between X and Y and 

learn how to better compress and decompress the baseline inputs. When anomalous data is given 

to the DNN as input, the compression and decompression will give an output that is different from 

the input. This is because the DNN does not know how to compress and decompress anomalous 

data. The difference between the input and the output will aid in determining if there is an anomaly, 

where it is, and how severe it is, which is all the information required. 

A popular and effective deep learning layer used for time-series data analysis is the Long Short-

Term Memory (LSTM) layer. The main idea behind the LSTM layer is that it outputs both an 

output value and a memory value for itself. This way the layer remembers what happened 

previously, though how much it remembers is determined by weights within the layer. The 

temperature and rainfall data of the past N timesteps before the conductivity values were obtained 

can be processed through multiple of these layers, and their output can be combined with the 

embedding tensor Z. This combination will change the embedding tensor given to the decoder, 

which will allow the DNN to learn the impact of the temperature and rainfall values over time on 

the conductivity values measured by ERT. 
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Train, Validation, Test Split 

The 729 files of available data were split into 70% training, 20% validation, and 10% testing. 

When dividing the dataset, it is important that the training, validation, and testing sets have a 

similar distribution as that of the population. The reason why this is important is to ensure that the 

model can generalize well, and the measure of its performance is accurate. If the train and/or 

validation distributions are too different from the test and/or population distribution, then what the 

model learns from training and validation will not carry over for testing or prediction of future 

data. Beyond that, during development, the performance of the model will seem better than what 

it truly is due to the difference in distributions. 

An approximation of the mean and standard deviation for each point of the true dataset was 

therefore calculated by sampling a few of the 729 files at random and calculating the mean for 

each point. That result was considered one sample. The process was then repeated until hundreds 

of samples were acquired, and then the mean and standard deviation for each point of those 

hundreds of samples was computed. This mean and standard deviation approximates the true mean 

and standard deviation of the population since the Parent Distribution Mean and the Sampling 

Distribution Mean are the same, and the standard deviation of the Parent Distribution divided by 

the square root of the sample size is equal to the standard deviation of the Sampling Distribution. 

Whether the conductivity values follow a normal distribution or not is of no significance since by 

the Central Limit Theorem, as the sample size increases, the sampling distribution converges to 

the same mean and standard error as the sampling distribution for normal distributions. With this 

approximation of the population distribution, the train, validation, and test sets were split in such 

a way that their mean was within one population standard deviation of the population mean. 

Preprocessing 

Since the conductivity values were near zero (thousandths place), the temperature values in the 

tens place, and the rainfall values in the tenths place, a standard scaler was used for preprocessing 

and converting the data to the same distribution with mean of 0 and standard deviation of 1. 

The use of Principal Component Analysis (PCA) was considered as a dimensionality reduction 

technique given that each input has over 1 million values and most of them are highly correlated 

with each other. However, the issue with PCA, is that slight changes to the input of PCA can lead 

to large changes in the output vector. For example, let the PCA operation applied on an input X be 

𝑓(𝑋) , then 𝑓(𝑋) = 𝑍. If the conductivity values are increased around a specific place to get 𝑋, 

then 𝑓(𝑋) = 𝑍 . Even though X and 𝑋 differ only on one area, the usage of PCA can and will lead 

to a Z and 𝑍 that differ everywhere. The vice versa is true, if Z and 𝑍 differ in one area, the inverse 

of PCA can and will lead to an X and 𝑋 that differ everywhere. This conflicts with our goal of 

finding the exact locations of the anomalies because if the input has an anomaly in one place, PCA 

can give an output that has an anomaly everywhere; or if the prediction of the model has a slight 

error somewhere, the inverse of PCA can lead to an output that is different from the input 

everywhere, so it may seem like there is an anomaly everywhere. 
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The conductivity values represent tetrahedrons from a mesh in 3D space, which will be referred to 

as points for simplicity. The 1,465,082 conductivity values form 410,227 points with their own x, 

y, z, and conductivity values. Since the points exist in XYZ space, it is possible to rearrange them 

into a 3D tensor, so that during training the spatial correlation between points provides more 

information to the DNN about the patterns in the data. However, the points in the 3D space are 

sparse. When those points are converted to a 3D tensor, they do not fill the entire tensor, but leave 

most of it empty. For example, if there are 3 points at (0,1,2), (1,2,0), and (2,0,1), it would take a 

3 x 3 x 3 tensor to represent those points in space, but those points occupy only 3 out of 27 spaces 

in the 3D tensor. This is an extreme example, but what occurred during preprocessing would 

require hundreds of terabytes to allocate one sample of points with 4 bytes per conductivity value.  

To resolve this issue, the points in 3D space were compressed by reindexing on every axis. The 

first axis is kept the same, so for a given value X from the first axis, the coordinates in the second 

axis are reset to start from 0. Subsequently, for a given value Y in the second axis, the coordinates 

in the third axis are reset to start at 0. For the previous example (0,1,2) would be converted to 

(0,0,0), (1,2,0) would be converted to (1,0,0) and (2,0,1) would become (2,0,0). If there was 

another point (0,2,2), it would be (0,1,0). This greatly compresses the sparse points while 

maintaining the spatial correlation. In the actual implementation, the 3D tensor was arranged in a 

ZYX format because it was required to properly use the 3D Convolutional Layers on that tensor. 

The use of graphs (or meshes) to represent the points in the 3D space was investigated, but it was 

not deemed to be any better than the compressed tensor approach due to some considerations 

discussed in the next section. 

Training 

During development, there were three main layers considered when building the Autoencoder 

architecture. The first one used Linear layers and was referred to as Linear Autoencoder. The 

second used 3D Convolutional and 3D Convolutional Transpose layers and was referred to as 

Convolutional Autoencoder. The last one used Graph Convolutional layers and Graph 

Convolutional Transpose layers and was referred to as Graph Autoencoder. 

After experimenting with the Linear Autoencoder, it was found that, like PCA, it did not do a good 

enough job of preserving the location of the anomalies. Changes to the input of the Linear 

Autoencoder in one area led to changes in the output of the Linear Autoencoder in most of the 

conductivity points. It would predict most of the conductivity values are anomalous even though 

most of them had remained normal when the input was changed. 

The issue with the Graph Autoencoder, is that Graph Convolutional Layers and similar approaches 

using GNNs would compress and decompress the graph, so the reconstruction is not just about the 

conductivity values, but the x, y, and z values as well. That is not helpful since prediction of the x, 

y, and z values on top of the conductivity values introduces unnecessary sources of error. To avoid 

compressing the x, y, z, the graph would have to become fixed, so applying the convolutional 

layers without reducing the size of the graph would lead to the risk of the Graph Autoencoder 
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becoming an identity function. In addition, if the size of the fixed graph were to be reduced, then 

it would be almost the same concept as that of the Convolutional Autoencoder. Due to these 

considerations, the representation of points in 3D space as a graph and the subsequent use of a 

Graph Autoencoder was not deemed to have an advantage over the compressed tensor and the 

Convolutional Autoencoder. At best it would give similar results, but it seemed likely that the 

Graph Autoencoder would do worse. 

The selected architecture was therefore the Convolutional Autoencoder, which is more capable of 

determining the presence of anomalies, where they are, and how severe they are, than the other 

layers explored. As previously mentioned, the rainfall and temperature data were handled through 

LSTM layers. 

Finding the best DNN architecture for a given dataset is not straightforward, but rather requires a 

mix of trial-and-error and intuition. As such, most of the architecture was parameterized, so parts 

of it like the number of 3D Convolutional layers, size of the 3D kernel, stride, padding, up sampling 

mode, number of LSTM layers, LSTM steps, nodes per LSTM layer, batch size, epochs, learning 

rate, weight decay, etc. could be easily changed. The activation function for the 3D Convolutional 

and 3D Convolutional Transpose layers was the Hyperbolic Tangent (tanh) function, and the 

activation function the LSTM layers was the Rectified Linear Unit (ReLU) function. The loss 

function of the network was Mean Squared Error (MSE) where the model prediction being off for 

a given conductivity value is highly punished. 

Using the parametrized architecture, a Random Search algorithm was run through 50 combinations 

of parameters where the DNNs were trained and their training and validation MSE per epoch were 

recorded. The architecture with the best training and validation MSE was then chosen as the best 

architecture, and the weights for the epoch that had the best training and validation MSE were 

chosen as the best weights for that architecture. 

Prediction 

For a given sample, once the model compresses and decompresses it, the output will have the same 

shape as the input, thus it is possible to calculate the difference between the output and input to 

gain a measure of how well the model did. If the model learned the correct patterns in the data, it 

is extremely successful in giving an output close to the input when the data is normal (small 

difference), and an output not too close to the input when the data is anomalous (large difference.) 

However, the difference is not a good measure of the performance because a difference of 0.001 

could be good or bad depending on the scale of the data. As such, when predicting, the percent 

error between the input and output is calculated to gain a better sense of how significant the 

difference truly is. Once there is a percent error for every conductivity value in each sample, the 

question remains: What is a good threshold? That is, it is not known how much percent error on a 

normal sample is normal and how much percent error on an anomalous sample is anomalous. 

The idea of a single static threshold applied for all points can be quickly discarded. There are some 

points for which the model’s output matches the input extremely closely and others for which it is 
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not so close. To apply a single static threshold that is too low runs the risk of marking the points 

in which the output is not too close to the input as anomalous even when they are normal. Yet to 

apply a single static threshold that is too high runs the risk of marking the anomalous points as 

normal points, especially for the points where the percent error is low, thus a threshold is needed 

for every point. 

It is possible to use Tolerance Intervals to bind, with α confidence, β proportion of the population. 

Finding the Tolerance Interval for each percent error between the input and output in the training 

set will give an estimate of the thresholds that determine what is a normal percent error for each 

point in a sample. One issue, though, is that the conductivity values are not normally distributed 

in the training data. Applying either a Shapiro-Wilk Test or a Kolmogorov-Smirnov Test will result 

in the vast majority of the points failing those normal distribution tests. 

There exists a way to calculate Tolerance Intervals using bootstrapping [4]. The algorithm used is 

known as Content Corrected k-Factor Tolerance Limits Based on Bootstrap. The main idea behind 

the algorithm is to use sampling with replacement to obtain an interval that contains at least β 

proportion of the population with approximate confidence α. 

Since extremely low conductivity values are not of interest due to the seepage of water being 

correlated with increased conductivity values, only the upper Tolerance interval was calculated 

with 99% confidence that the interval contains 99% of the population. 

Thus, the prediction process for a given sample is as follows: input the sample to the Convolutional 

Autoencoder and obtain an output, calculate the percent error between the input and the output, 

and adjust each percent error based on the corresponding tolerance interval by subtracting them 

and turning all negative values to zero. The result is a prediction of where the anomalies are (non-

zero points) and how severe they are where a bigger percent error means a bigger discrepancy 

between the conductivity values expected by the model with the tolerance intervals and what the 

input conductivity values were. 

Visualization 

For humans to better understand where the anomalies are and their severity, a visualization script 

was implemented. The visualization script takes in the final percent error result from prediction 

and the x, y, and z coordinates and maps those percent errors to a 3D space with different color 

intensities. The specific colors as well as the thresholds where one color turns to the next can be 

user-defined. Lastly, the 3D space is saved as a webpage that the user can double click, render the 

3D space in the browser, pan, zoom, and move around in it. This means that no packages or extra 

software are needed to analyze the results beyond a web browser.  
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3. RESULTS AND ANALYSIS 

The results of using random search for hyperparameter optimization during training are shown 

below. 

 

Figure 1. The MSE of the validation set for each run compared to the MSE of the training set. 

These results show that there is one run that has the lowest mean squared error (MSE) loss on both 

the training and validation sets. This run is therefore considered the best run amongst the set of 31 

runs. The runs were stopped at 31 instead of the planned 50 as the best run was found early and 

none of the 20+ runs after that were close to that one run. 

This run describes the architecture that has the best learning capabilities, and thus the best 

hyperparameters for the Convolutional Autoencoder architecture. These best hyperparameters 

found included 5 convolutional layers with a 4 x 4 x 1 kernel and a stride of 2, 3 Long Short-Term 

Memory (LSTM) layers with 71 nodes within each layer, 152 timesteps in the LSTM layer input 

(with 15-minute intervals between each timestep), a batch size of 43, and 85 epochs of training 

time. There was also a LSTM dropout layer of about 0.2 between each LSTM layer. Lastly, the 

learning rate was about 0.005 and the weight decay around 2 ∗ 10−7. 
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Figure 2. A visualization of the architecture that had the lowest training and validation loss. 
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To evaluate the architecture (and the corresponding weights that resulted in the lowest training and 

validation loss), there are two assessments required: first, assessment of the performance of the 

model on normal data and second, assessment of the performance of the model on anomalous data. 

 

Figure 3. Reconstruction error of the Convolutional Autoencoder on a normal sample. 

Figure 3 shows a bottom view of the 3D space, where the z-axis is facing away from the screen. 

The blue points are tetrahedrons where the model with tolerance intervals has a reconstruction 

error less than 1 ∗ 10−6. 

A sample of the normal ERT data can be obtained from the test set. However, to obtain a sample 

of anomalous data, it must be artificially generated. This can be done by finding the midpoints of 

all tetrahedrons, choosing one of them as the center, and increasing the conductivity of all points 

in a D radius by a factor N. As such, it is possible to take a random midpoint somewhere beneath 

the basin cap and increase the conductivity in a 5-meter radius by 30%. 

 

Figure 4. The expected reconstruction error of the Convolutional Autoencoder on an anomalous sample. 

The image above shows the results expected if the model can perfectly detect every single point 

where the conductivity was increased by 30%. The blue color indicates points where there should 
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be no reconstruction errors and the green color indicates points where there should be 

reconstruction errors. 

 

Figure 5. The actual reconstruction error of the Convolutional Autoencoder on an anomalous sample. 

The image above shows the reconstruction error after passing the anomalous sample as input to 

the model, predicting on it, and then applying the tolerance interval thresholding. The blue points 

indicate a reconstruction error below 1 ∗ 10−6 and the yellow points indicate a reconstruction error 

above that. 

From these results, it is clear there is a high fidelity between what the model receives as input and 

what it outputs. When given normal data as input, the model’s reconstruction error is near zero. 

And when given anomalous data as input, the model’s reconstruction error is high only on the 

points that are anomalous. That is, the model’s reconstruction error is high only on points whose 

conductivity values are deemed to be unusually high, and the model’s “judgement” gives the 

desired results since the defined ground truth matches the actual reconstruction error. 

However, the model’s performance is not the same throughout the predictions across the year. The 

sample shown above is from October 2022. Samples from months close to October exhibit similar 

performance where the results are nigh on perfect. On the other hand, results around April 2023, 

and months close to April, are less outstanding. It seems that with the changes in seasons, there is 

not insignificant change in the conductivity values that even the model has difficulty adjusting to 

it. 
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Figure 6. Example of one of the worst results from the month of April 2023. 

As seen from figure 6, the actual reconstruction error still matches the trend of the expected 

reconstruction error. There are less points marked as anomalous, but there are still enough to 

determine exactly where the anomaly is and how severe it is. Moreover, as the radius and/or 

magnitude of the conductivity anomalies increases, the performance of the model in April 

increases. But there is a clear decrease in performance between months like October and April. 

A possible cause considered is that there is a difference in the rainfall and temperature between 

those months. Yet, the model was given rainfall and temperature data to learn from and adjust its 

predictions. It may be possible that the rainfall and weather signals to the model were not strong 

enough, or that they are negligible in some seasons and crucial in others, which could cause the 

model to not properly learn how to use them. It could also be that the conductivity values are lower 

around April than around October, so a 30% increase in conductivity in April does not seem as 

much of an anomaly to the system as it does in October due to the way the thresholds are created. 

Higher conductivity value increases e.g., 60%, do lead to much better results across all samples. 

However, it is possible that there is another variable not considered that is causing these changes, 

which can include some soil property changes, noise/measurement errors, or some other unknown 

not given as input to the model. 

Exploring the true cause for the discrepancies between the prediction results in anomalous data 

depending on the month (or season) and determining how to rectify these discrepancies is a crucial 

step to further improving the results of the system, a consideration for future work. 
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4. CONCLUSION 

A system to automatically detect the presence, location, and severity of anomalies in ERT data 

was successfully developed using Convolutional and LSTM layers in an Autoencoder algorithm. 

The results of the system can be translated to the presence of water below the surface, which will 

help DOE personnel better assess the structural integrity of the F-Area Basin 3 cap and its 

effectiveness in preventing water seepage. Also, the system removes the need for a human to 

analyze the raw ERT data, but they can then instead quickly and easily analyze the visualization 

of the system’s results if needed. This will allow workforce and other resources to be focused on 

other areas that need the DOE’s attention. 

In addition, while the current system was built using the F-Area Basin 3 ERT data, it can be 

effortlessly extended to other caps and similar ERT data monitoring projects. The re-training of 

the model to find the best architecture and weights, as well as the re-calculation of the tolerance 

intervals can be done by changing a few configurations and running a few scripts. Besides that, 

nothing else changes if the cap under monitoring changes. This makes the system adaptable to new 

areas of interest and/or significant changes to previous areas of interest where previously measured 

data is made irrelevant. 

Thus, an effective tool to monitor the water seepage given ERT data has been created for the F-

Area Basin 3 cap and similar places. 
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APPENDIX 

Table 1. Train and Validation MSE loss data for each run. 

Name Train MSE Loss Validation MSE Loss 

Run 0 0.175143184 0.196717994 

Run 1 0.177040991 0.185042394 

Run 2 0.172664078 0.185895031 

Run 3 0.177089404 0.192281671 

Run 4 0.181873495 0.220255679 

Run 5 0.169816657 0.209339124 

Run 6 0.179186282 0.209460454 

Run 7 0.168737823 0.185114585 

Run 8 0.17894202 0.196789542 

Run 9 0.168763029 0.188264981 

Run 10 0.180153807 0.197442356 

Run 11 0.182994021 0.187009071 

Run 12 0.174040784 0.210346125 

Run 13 0.173386112 0.208668079 

Run 14 0.176584507 0.188137872 

Run 15 0.177589393 0.186379065 
 

Name Train MSE Loss Validation MSE Loss 

Run 16 0.178560288 0.183991797 

Run 17 0.169187198 0.21098793 

Run 18 0.169695603 0.188484063 

Run 19 0.169030467 0.185351784 

Run 20 0.179917443 0.206826912 

Run 21 0.171039006 0.194987462 

Run 22 0.183068363 0.187193165 

Run 23 0.175986097 0.201765934 

Run 24 0.181897802 0.18643184 

Run 25 0.176360668 0.190267457 

Run 26 0.16871109 0.185251365 

Run 27 0.147378004 0.178033901 

Run 28 0.173205549 0.214638989 

Run 29 0.175584171 0.18827203 

Run 30 0.174545503 0.184466976 
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Figure 7. Browser-based 3D visualization that user can load pan, zoom, and move in. 


